app

Results 1 - 25 of 10994Sort Results By: Published Date | Title | Company Name
Published By: DATAVERSITY     Published Date: Nov 05, 2014
Ask any CEO if they want to better leverage their data assets to drive growth, revenues, and productivity, their answer will most likely be “yes, of course.” Ask many of them what that means or how they will do it and their answers will be as disparate as most enterprise’s data strategies. To successfully control, utilize, analyze, and store the vast amounts of data flowing through organization’s today, an enterprise-wide approach is necessary. The Chief Data Officer (CDO) is the newest member of the executive suite in many organizations worldwide. Their task is to develop and implement the strategies needed to harness the value of an enterprise’s data, while working alongside the CEO, CIO, CTO, and other executives. They are the vital “data” bridge between business and IT. This paper is sponsored by: Paxata and CA Technologies
Tags : 
chief data officer, cdo, data, data management, research paper, dataversity
    
DATAVERSITY
Published By: Ted Hills     Published Date: Mar 08, 2017
This paper explores the differences between three situations that appear on the surface to be very similar: a data attribute that may occur zero or one times, a data attribute that is optional, and a data attribute whose value may be unknown. It shows how each of these different situations is represented in Concept and Object Modeling Notation (COMN, pronounced “common”). The theory behind the analysis is explained in greater detail by three papers: Three-Valued Logic, A Systematic Solution to Handling Unknown Data in Databases, and An Approach to Representing Non-Applicable Data in Relational Databases.
Tags : 
    
Ted Hills
Published By: Ted Hills     Published Date: Mar 08, 2017
Much has been written and debated about the use of SQL NULLs to represent unknown values, and the possible use of three-valued logic. However, there has never been a systematic application of any three-valued logic to use in the logical expressions of computer programs. This paper lays the foundation for a systematic application of three-valued logic to one of the two problems inadequately addressed by SQL NULLs.
Tags : 
    
Ted Hills
Published By: Ted Hills     Published Date: Mar 08, 2017
Ever since Codd introduced so-called “null values” to the relational model, there have been debates about exactly what they mean and their proper handling in relational databases. In this paper I examine the meaning of tuples and relations containing “null values”. For the type of “null value” representing unknown data, I propose an interpretation and a solution that is more rigorously defined than the SQL NULL or other similar solutions, and which can be implemented in a systematic and application-independent manner in database management systems.
Tags : 
    
Ted Hills
Published By: Ted Hills     Published Date: Mar 08, 2017
Ever since Codd introduced so-called “null values” to the relational model, there have been debates about exactly what they mean and their proper handling in relational databases. In this paper I examine the meaning of tuples and relations containing “null values”. For the type of “null value” representing that data are not applicable, I propose an interpretation and a solution that is more rigorously defined than the SQL NULL or other similar solutions, and which can be implemented in a systematic and application-independent manner in database management systems.
Tags : 
    
Ted Hills
Published By: Attunity     Published Date: Oct 19, 2018
Change data capture (CDC) technology can modernize your data and analytics environment with scalable, efficient and real-time data replication that does not impact production systems. To realize these benefits, enterprises need to understand how this critical technology works, why it’s needed, and what their Fortune 500 peers have learned from their CDC implementations. This book serves as a practical guide for enterprise architects, data managers and CIOs as they enable modern data lake, streaming and cloud architectures with CDC. Read this book to understand: ? The rise of data lake, streaming and cloud platforms ? How CDC works and enables these architectures ? Case studies of leading-edge enterprises ? Planning and implementation approaches
Tags : 
    
Attunity
Published By: CData     Published Date: Jan 04, 2019
The growth of NoSQL continues to accelerate as the industry is increasingly forced to develop new and more specialized data structures to deal with the explosion of application and device data. At the same time, new data products for BI, Analytics, Reporting, Data Warehousing, AI, and Machine Learning continue along a similar growth trajectory. Enabling interoperability between applications and data sources, each with a unique interface and value proposition, is a tremendous challenge. This paper discusses a variety of mapping and flattening techniques, and continues with examples that highlight performance and usability differences between approaches.
Tags : 
data architecture, data, data management, business intelligence, data warehousing
    
CData
Published By: Alation     Published Date: Jan 06, 2017
90% of the time that is spent creating new reports is recreating information that already exists. Without a way to effectively share prior work and identify verified data sources, analysts and other data consumers lack shared context on how to apply data to analytic inquiries and business decision making. Time is wasted tracking down subject matter experts and trying to unearth tribal knowledge. Leading analytic organizations in retail, healthcare, financial services and technology are using data catalogs to help their analysts find, understand and use data appropriately. What are the 5 critical capabilities of a data catalog? Learn more here:
Tags : 
    
Alation
Published By: Alation     Published Date: Jan 06, 2017
90% of the time that is spent creating new reports is recreating information that already exists. Without a way to effectively share prior work and identify verified data sources, analysts and other data consumers lack shared context on how to apply data to analytic inquiries and business decision making. Time is wasted tracking down subject matter experts and trying to unearth tribal knowledge. Leading analytic organizations in retail, healthcare, financial services and technology are using data catalogs to help their analysts find, understand and use data appropriately. What are the 5 critical capabilities of a data catalog? Learn more here:
Tags : 
    
Alation
Published By: Databricks     Published Date: Sep 13, 2018
Learn how to get started with Apache Spark™ Apache Spark™’s ability to speed analytic applications by orders of magnitude, its versatility, and ease of use are quickly winning the market. With Spark’s appeal to developers, end users, and integrators to solve complex data problems at scale, it is now the most active open source project with the big data community. With rapid adoption by enterprises across a wide range of industries, Spark has been deployed at massive scale, collectively processing multiple petabytes of data on clusters of over 8,000 nodes. If you are a developer or data scientist interested in big data, learn how Spark may be the tool for you. Databricks is happy to present this ebook as a practical introduction to Spark. Download this ebook to learn: • Spark’s basic architecture • Why Spark is a popular choice for data analytics • What tools and features are available • How to get started right away through interactive sample code
Tags : 
    
Databricks
Published By: Dell Boomi     Published Date: May 29, 2013
Application and data integration doesn't have to be slow and expensive. New cloud-based integration platforms dramatically speed results and lower costs, as outlined in this new report by Bloor Research.
Tags : 
    
Dell Boomi
Published By: Dell Boomi     Published Date: May 28, 2013
Application and data integration doesn't have to be slow and expensive. New cloud-based integration platforms dramatically speed results and lower costs, as outlined in this new report by Bloor Research.
Tags : 
    
Dell Boomi
Published By: First San Francisco Partners     Published Date: Oct 29, 2015
One of the biggest challenges in a data management initiative is aligning different and sometimes competing organizations to work towards the same long-term vision. That is why a proactive approach to aligning the organization around a common goal and plan is critical when launching a data management program.
Tags : 
    
First San Francisco Partners
Published By: Couchbase     Published Date: Jul 15, 2013
NoSQL database technology is increasingly chosen as viable alternative to relational databases, particularly for interactive web applications. Developers accustomed to the RDBMS structure and data models need to change their approach when transitioning to NoSQL. Download this white paper to learn about the main challenges that motivates the need for NoSQL, the differences between relational databases and distributed document-oriented databases, the key steps to perform document modeling in NoSQL databases, and how to handle concurrency, scaling and multiple-place updates in a non-relational database.
Tags : 
white paper, database, nosql, couchbase
    
Couchbase
Published By: Couchbase     Published Date: Dec 04, 2014
Interactive applications have changed dramatically over the last 15 years. In the late ‘90s, large web companies emerged with dramatic increases in scale on many dimensions: · The number of concurrent users skyrocketed as applications increasingly became accessible · via the web (and later on mobile devices). · The amount of data collected and processed soared as it became easier and increasingly · valuable to capture all kinds of data. · The amount of unstructured or semi-structured data exploded and its use became integral · to the value and richness of applications. Dealing with these issues was more and more difficult using relational database technology. The key reason is that relational databases are essentially architected to run a single machine and use a rigid, schema-based approach to modeling data. Google, Amazon, Facebook, and LinkedIn were among the first companies to discover the serious limitations of relational database technology for supporting these new application requirements. Commercial alternatives didn’t exist, so they invented new data management approaches themselves. Their pioneering work generated tremendous interest because a growing number of companies faced similar problems. Open source NoSQL database projects formed to leverage the work of the pioneers, and commercial companies associated with these projects soon followed. Today, the use of NoSQL technology is rising rapidly among Internet companies and the enterprise. It’s increasingly considered a viable alternative to relational databases, especially as more organizations recognize that operating at scale is more effectively achieved running on clusters of standard, commodity servers, and a schema-less data model is often a better approach for handling the variety and type of data most often captured and processed today.
Tags : 
database, nosql, data, data management, white paper, why nosql, couchbase
    
Couchbase
Published By: Adaptive     Published Date: May 10, 2017
Enterprise metadata management and data quality management are two important pillars of successful enterprise data management for any organization. A well implemented enterprise metadata management platform can enable a successful data quality management at the enterprise level. This paper describes in detail an approach to integrate data quality and metadata management leveraging the Adaptive Metadata Manager platform. It explains the various levels of integrations and the benefits associated with each.
Tags : 
    
Adaptive
Published By: ASG     Published Date: Apr 02, 2014
This Case Study focuses on a highly successful data lineage project between ASG Software Solutions and a major global financial institution. The initial project which began in 2011 with the primary goal of achieving greater control, awareness, and ownership over the institution’s data assets due to new regulatory and federal audit controls. As the project progressed and the positive relationship between ASG and the Bank deepened, all stakeholders involved began to see much broader potential for the entire project than originally envisioned.
Tags : 
metadata, data, data management, white paper, case study
    
ASG
Published By: MarkLogic     Published Date: Jun 17, 2015
Modern enterprises face increasing pressure to deliver business value through technological innovation that leverages all available data. At the same time, those enterprises need to reduce expenses to stay competitive, deliver results faster to respond to market demands, use real-time analytics so users can make informed decisions, and develop new applications with enhanced developer productivity. All of these factors put big data at the top of the agenda. Unfortunately, the promise of big data has often failed to deliver. With the growing volumes of unstructured and multi-structured data flooding into our data centers, the relational databases that enterprises have relied on for the last 40-years are now too limiting and inflexible. New-generation NoSQL (“Not Only SQL”) databases have gained popularity because they are ideally suited to deal with the volume, velocity, and variety of data that businesses and governments handle today.
Tags : 
data, data management, databse, marklogic, column store, wide column store, nosql
    
MarkLogic
Published By: TopQuadrant     Published Date: Jun 01, 2017
This paper presents a practitioner informed roadmap intended to assist enterprises in maturing their Enterprise Information Management (EIM) practices, with a specific focus on improving Reference Data Management (RDM). Reference data is found in every application used by an enterprise including back-end systems, front-end commerce applications, data exchange formats, and in outsourced, hosted systems, big data platforms, and data warehouses. It can easily be 20–50% of the tables in a data store. And the values are used throughout the transactional and mastered data sets to make the system internally consistent.
Tags : 
    
TopQuadrant
Published By: TopQuadrant     Published Date: Jun 11, 2018
Data governance is a lifecycle-centric asset management activity. To understand and realize the value of data assets, it is necessary to capture information about them (their metadata) in the connected way. Capturing the meaning and context of diverse enterprise data in connection to all assets in the enterprise ecosystem is foundational to effective data governance. Therefore, a data governance environment must represent assets and their role in the enterprise using an open, extensible and “smart” approach. Knowledge graphs are the most viable and powerful way to do this. This short paper outlines how knowledge graphs are flexible, evolvable, semantic and intelligent. It is these characteristics that enable them to: • capture the description of data as an interconnected set of information that meaningfully bridges enterprise metadata silos. • deliver integrated data governance by addressing all three aspects of data governance — Executive Governance, Representative Governance, and App
Tags : 
    
TopQuadrant
Published By: CA Technologies     Published Date: Apr 24, 2013
Using ERwin Data Modeler & Microsoft SQL Azure to Move Data to the Cloud within the DaaS Lifecycle by Nuccio Piscopo Cloud computing is one of the major growth areas in the world of IT. This article provides an analysis of how to apply the DaaS (Database as a Service) lifecycle working with ERwin and the SQL Azure platform. It should help enterprises to obtain the benefits of DaaS and take advantage of its potential for improvement and transformation of data models in the Cloud. The use case introduced identifies key actions, requirements and practices that can support activities to help formulate a plan for successfully moving data to the Cloud.
Tags : 
    
CA Technologies
Published By: CA Technologies     Published Date: Apr 24, 2013
This white paper by industry expert Alec Sharp illustrates these points and provides specific guidelines and techniques for a business-oriented approach to data modeling. Examples demonstrate how business professionals.
Tags : 
white paper, ca technologies, erwin, data, data management, data modeling, dataversity
    
CA Technologies
Published By: CA Technologies     Published Date: Dec 03, 2015
This 2nd paper in a 3-part series by David Loshin explores some challenges in bootstrapping a data governance program, and then considers key methods for using metadata to establish the starting point for data governance. The paper will focus on how metadata management facilitates progress along three facets of the data governance program including assessment, collaboration and operationalization.
Tags : 
    
CA Technologies
Published By: CA Technologies     Published Date: Feb 25, 2016
As combinations of both internal and externally-imposed business policies imply dependencies on managed data artifacts, organizations are increasingly instituting data governance programs to implement processes for ensuring compliance with business expectations. One fundamental aspect of data governance involves practical application of business rules to data assets based on data elements and their assigned values. Yet despite the intent of harmonizing data element definitions and resolution of data semantics and valid reference values, most organizations rarely have complete visibility into the metadata associated with enterprise data assets.
Tags : 
    
CA Technologies
Published By: MapR Technologies     Published Date: Mar 29, 2016
Add Big Data Technologies to Get More Value from Your Stack Taking advantage of big data starts with understanding how to optimize and augment your existing infrastructure. Relational databases have endured for a reason – they fit well with the types of data that organizations use to run their business. These types of data in business applications such as ERP, CRM, EPM, etc., are not fundamentally changing, which suggests that relational databases will continue to play a foundational role in enterprise architectures for the foreseeable future. One area where emerging technologies can complement relational database technologies is big data. With the rapidly growing volumes of data, along with the many new sources of data, organizations look for ways to relieve pressure from their existing systems. That’s where Hadoop and NoSQL come in.
Tags : 
    
MapR Technologies
Start   Previous   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15    Next    End
Search      

Add Research

Get your company's research in the hands of targeted business professionals.

We use technologies such as cookies to understand how you use our site and to provide a better user experience. This includes personalizing content, using analytics and improving site operations. We may share your information about your use of our site with third parties in accordance with our Privacy Policy. You can change your cookie settings as described here at any time, but parts of our site may not function correctly without them. By continuing to use our site, you agree that we can save cookies on your device, unless you have disabled cookies.
I Accept