big data

Results 1 - 25 of 1124Sort Results By: Published Date | Title | Company Name
Published By: Syncsort     Published Date: Jan 04, 2018
The term Big Data doesn’t seem quite “big enough” anymore to properly describe the vast over-abundance of data available to organizations today. As the volume and variety of Big Data sources continue to grow, the level of trust in that data remains troublingly low. Read on and discover how a strong focus on data quality spanning the people, processes and technology of your organization will help keep your data lake pristine.
Tags : 
    
Syncsort
Published By: DATAVERSITY     Published Date: Jul 24, 2014
Will the “programmable era” of computers be replaced by Cognitive Computing systems which can learn from interactions and reason through dynamic experience just like humans? With rapidly increasing volumes of Big Data, there is a compelling need for smarter machines to organize data faster, make better sense of it, discover insights, then learn, adapt, and improve over time without direct programming. This paper is sponsored by: Cognitive Scale.
Tags : 
data, data management, cognitive computing, machine learning, artificial intelligence, research paper
    
DATAVERSITY
Published By: First San Francisco Partners     Published Date: Oct 29, 2015
One of the biggest challenges in a data management initiative is aligning different and sometimes competing organizations to work towards the same long-term vision. That is why a proactive approach to aligning the organization around a common goal and plan is critical when launching a data management program.
Tags : 
    
First San Francisco Partners
Published By: MarkLogic     Published Date: Aug 04, 2014
The Age of Information and the associated growth of the World Wide Web has brought with it a new problem: how to actually make sense of all the information available. The overarching goal of the Semantic Web is to change that. Semantic Web technologies accomplish this goal by providing a universal framework to describe and link data so that it can be better understood and searched holistically, allowing both people and computers to see and discover relationships in the data. Today, organizations are leveraging the power of the Semantic Web to aggregate and link disparate data, improve search navigation, provide holistic search and discovery, dynamically publish content, and complete ETL processes faster. Read this white paper to gain insight into why Semantics is important, understand how Semantics works, and see examples of Semantics in practice.
Tags : 
data, data management, whitepaper, marklogic, semantic, semantic technology, nosql, database
    
MarkLogic
Published By: MarkLogic     Published Date: Jun 17, 2015
Modern enterprises face increasing pressure to deliver business value through technological innovation that leverages all available data. At the same time, those enterprises need to reduce expenses to stay competitive, deliver results faster to respond to market demands, use real-time analytics so users can make informed decisions, and develop new applications with enhanced developer productivity. All of these factors put big data at the top of the agenda. Unfortunately, the promise of big data has often failed to deliver. With the growing volumes of unstructured and multi-structured data flooding into our data centers, the relational databases that enterprises have relied on for the last 40-years are now too limiting and inflexible. New-generation NoSQL (“Not Only SQL”) databases have gained popularity because they are ideally suited to deal with the volume, velocity, and variety of data that businesses and governments handle today.
Tags : 
data, data management, databse, marklogic, column store, wide column store, nosql
    
MarkLogic
Published By: TopQuadrant     Published Date: Jun 01, 2017
This paper presents a practitioner informed roadmap intended to assist enterprises in maturing their Enterprise Information Management (EIM) practices, with a specific focus on improving Reference Data Management (RDM). Reference data is found in every application used by an enterprise including back-end systems, front-end commerce applications, data exchange formats, and in outsourced, hosted systems, big data platforms, and data warehouses. It can easily be 20–50% of the tables in a data store. And the values are used throughout the transactional and mastered data sets to make the system internally consistent.
Tags : 
    
TopQuadrant
Published By: MapR Technologies     Published Date: Mar 29, 2016
Add Big Data Technologies to Get More Value from Your Stack Taking advantage of big data starts with understanding how to optimize and augment your existing infrastructure. Relational databases have endured for a reason – they fit well with the types of data that organizations use to run their business. These types of data in business applications such as ERP, CRM, EPM, etc., are not fundamentally changing, which suggests that relational databases will continue to play a foundational role in enterprise architectures for the foreseeable future. One area where emerging technologies can complement relational database technologies is big data. With the rapidly growing volumes of data, along with the many new sources of data, organizations look for ways to relieve pressure from their existing systems. That’s where Hadoop and NoSQL come in.
Tags : 
    
MapR Technologies
Published By: Paxata     Published Date: Apr 02, 2014
Why Sift Through Data Landfills? Better business insight comes from data - but data is often dirty, incomplete and complicated. As any analyst would admit, what passes for data science is more like janitorial work. Find out why that is - and how you can avoid the painful, manual and error-prone processes that have bogged down the analytics process for 30 years.
Tags : 
data, data management, big data, white paper, paxata, analytics
    
Paxata
Published By: Cambridge Semantics     Published Date: Mar 13, 2015
As the quantity and diversity of relevant data grows within and outside the enterprise, how can IT easily deploy secure governed solutions that allow business users to identify, extract, link together and derive value from the right data at the right time, at big data scale, while keeping up with ever changing business needs? Smart Enterprise Data Management (Smart EDM) is new, sensible paradigm for managing enterprise data. Anzo Smart Data solutions allow IT departments and their business users to quickly and flexibly access all of their diverse data. Based upon graph data models and Semantic data standards, Anzo enables users to easily perform advanced data management and analytics through the lens of their business at a fraction of the time and cost of traditional approaches, while adhering to the governance and security required by enterprise IT groups. Download this whitepaper to learn more.
Tags : 
enterprise data management, data governance, data integration, cambridge semantics
    
Cambridge Semantics
Published By: Cambridge Semantics     Published Date: May 11, 2016
With the explosive growth of Big Data, IT professionals find their time and resources squeezed between managing increasingly large and diverse siloed data stores and increased user demands for timely, accurate data. The graph-based ANZO Smart Data Manager is built to relieve these burdens by automating the process of managing, cataloging and governing data at enterprise scale and security. Anzo Smart Data Manager allows companies to truly understand their data ecosystems and leverage the metadata within it.
Tags : 
    
Cambridge Semantics
Published By: AT&T     Published Date: Sep 11, 2014
The age of Big Data is upon us. Storage costs are going down, and data analytics is becoming more capable and more user-friendly. Even your auto mechanic will be storing a petabyte of data soon. Big Data will give businesses new insights and help improve operations. With these new tools come questions about how to use them. But your mechanic knows more about fixing a transmission than developing a Hadoop cluster, and similar concerns hold true for larger enterprises. Businesses everywhere are looking for guidance.
Tags : 
    
AT&T
Published By: AnalytixDS     Published Date: Feb 28, 2015
With future business intelligence solutions clearly evolving from data that comes from highly efficient and well behaved systems, to data that comes from the extended enterprise where data is not necessarily so well structured and behaved - Organizations are forced into a more collaborative mode of operation with their core infrastructure being adapted from the consumer space, and to the extent possible, conformed to their existing repositories. This whitepaper attempts to address various challenges consumers face while managing enormous data sets within the context of this complex scenario. Further, we’ll try to answer the question: Is Big Data Governance really that different from traditional data governance initiatives? Finally, we’ll see how AnalytiX™ Mapping Manager™ can help organizations accelerate the development and deployment of a successful Big Data/ Business Intelligence platform and accelerate delivery of all sorts of data – structured, semi-structured as well as unstruc
Tags : 
big data, big data governance, data governance, analytixds
    
AnalytixDS
Published By: CapTech     Published Date: May 26, 2015
Big Data is the future of business. According to CloudTweaks.com, as much as 2.5 quintillion bytes of data are produced each day, with most of this data being captured by Big Data. With its ability to transfer all data sources all into one centralized place, Big Data provides opportunities, clearer visions, customer conversations and transactions. However, with the dazzling big promise of Big Data comes a potentially huge letdown. If this vast pool of information resources is not accessible or usable, it becomes useless. This paper examines strategies for building the most value into your Big Data system by enabling process controls to effectively mine, access and secure Big Data.
Tags : 
big data, captech, data, data management, nosql
    
CapTech
Published By: Neo Technology     Published Date: Jun 28, 2015
The future of Master Data Management is deriving value from data relationships which reveal more data stories that become more and more important to competitive advantage as we enter into the future of data and business analytics. MDM will be about supplying consistent, meaningful views of master data and being able to unify data into one location, especially to optimize for query performance and data fit. Graph databases offer exactly that type of data/performance fit. Use data relationships to unlock real business value in MDM: - Graphs can easily model both hierarchical and non-hierarchical master data - The logical model IS the physical model making it easier for business users to visualize data relationships - Deliver insights in real-time from data relationships in your master data - Stay ahead of the business with faster development Download and read the white paper Your Master Data Is a Graph: Are You Ready? to learn why your master data is a graph and how graph databases like Neo4j are the best technologies for MDM.
Tags : 
database, nosql, graph database, big data, master data management, mdm
    
Neo Technology
Published By: VoltDB     Published Date: Jul 09, 2015
What is fast data? It's data in motion, and it creates Big Data. But handling it requires a radically different approach. Download the Fast Data Stack white paper from VoltDB. Learn how to build fast data applications with an in-memory solution that’s powerful enough for real-time stateful operations.
Tags : 
data, data management, data stack, bug data, voltdb, database, nosql
    
VoltDB
Published By: Experian     Published Date: May 17, 2016
Every year, Experian Data Quality conducts a study to look at the global trends in data quality. This year, research findings reveal how data practitioners are leveraging and managing data to generate actionable insight, and how proper data management is becoming an organization-wide imperative. This study polled more than 1,400 people across eight countries globally from a variety of roles and departments. Respondents were chosen based on their visibility into their orgazation's customer data management practices. Read through our research report to learn: - The changes in channel usage over the last 12 months - Expected changes in big data and data management initiatives - Multi-industry benchmarks, comparisons, and challenges in data quality - And more! Our annual global benchmark report takes a close look at the data quality and data management initiatives driving today's businesses. See where you line up and where you can improve.
Tags : 
    
Experian
Published By: WhereScape     Published Date: Mar 16, 2016
Industry expert Wayne Eckerson provides an overview of the emerging data warehouse automation market and outlines the value of using automation tools for developing data warehouses, data marts, analytical environments and big data platforms. Eckerson details WhereScape’s architecture—which enables a data-driven approach to automation. Eckerson also discusses how agility and automation together encourage iterative development and closer collaboration between business and IT.
Tags : 
    
WhereScape
Published By: Snowflake Computing     Published Date: Apr 19, 2016
Data warehouse as a service brings scalability and flexibility to organizations seeking to deliver data to all users and systems that need to analyze it. The ability to access and analyze data is the critical foundational element for competing in new and old industries alike. Yet, a recent survey of IT executives finds that most are still struggling— and frustrated — with widely used data analytics tools. Find out what your peers are saying, and see how your data analytics environment compares.
Tags : 
    
Snowflake Computing
Published By: Snowflake Computing     Published Date: Feb 27, 2017
Snowflake’s cloud-built data warehouse delivers the performance, concurrency, simplicity and affordability needed to store and analyze all of an organization’s data in one location. Snowflake combines the power of data warehousing, the flexibility of big data platforms and the elasticity of the cloud. Find out more at snowflake.net.
Tags : 
    
Snowflake Computing
Published By: Finch Computing     Published Date: Apr 26, 2016
FinchDB is not just a database, not just an analytics engine and not just a search tool. It’s all three. All together. All in-memory. It’s a new, enabling platform technology built on an IP portfolio of 25 unique inventions, and suited for multiple high-volume, high-stakes use cases. While other big data solutions are answers-oriented, FinchDB enables users to ask better questions of their data. Because better questions must come before better answers.
Tags : 
    
Finch Computing
Published By: FairCom     Published Date: May 25, 2016
As companies embrace NoSQL as the “next big thing,” they are rightly cautious of abandoning their investment in SQL. The question a responsible developer or IT manager must investigate is “in which cases are each of these technologies, SQL and NoSQL, the appropriate solution?” For example, cloud provider BigStep offered this assessment: “NoSQL is not the best model for OLTP, ad hoc queries, complicated relationships among the data, and situations when stability and reliability outweigh the importance of speed.” While that statement may be true of many NoSQL databases, c-treeACE is the exception. Its unique, No+SQL architecture offers the advantages of SQL on top of a robust, high-performance NoSQL core engine. In this white paper, you'll read five ways c-treeACE breaks the NoSQL mold in terms of: • Data Integrity • Availability and Reliability • Complex Data Relationships • Flexible Queries • Performance
Tags : 
    
FairCom
Published By: Profium     Published Date: Mar 28, 2017
Profium Sense is an AI powered graph database which has unique features such as triggered query evaluation and ability to change rules in runtime. With support for open standards, it provides a reliable backbone for your next-generation digital services.
Tags : 
    
Profium
Published By: Basho     Published Date: Nov 25, 2015
The landscape of Scalable Operational and Analytical Systems is changing and disrupting the norm of using relational databases for all workloads. With the growing need to process and analyze Big Data at Scale, the demand for alternative strategies has grown and has given rise to the emergence of NoSQL databases for scalable processing. Mike Ferguson, Managing Director of Intelligent Business Strategies, is an independent IT Analyst who specializes in Big Data, BI/Analytics, Data Management and Enterprise Business Integration. In this whitepaper he will discuss the movement towards NoSQL databases for scalable operational and analytical systems, what’s driving Big Data analytics from Hadoop to the emergence of Apache Spark, the value of operational analytics and the importance of in-memory processing, and why use Apache Spark as your in-memory analytical platform for operational analytics.
Tags : 
    
Basho
Published By: VoltDB     Published Date: Nov 09, 2015
The consumerization of IT requires an evolution in the way applications are designed and developed. This white paper looks at the requirements of the Fast Data workflow and proposes solution patterns for the most common problems software development organizations must resolve to build applications – and apps – capable of managing fast and big data.
Tags : 
    
VoltDB
Published By: DATAVERSITY     Published Date: Jan 21, 2013
This report examines the biggest challenges faced by data modelers at both quantitative and qualitative levels. It discusses the results of four different data modeling surveys in 2007, 2009, 2011, and 2012.
Tags : 
data management
    
DATAVERSITY
Start   Previous   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15    Next    End
Search      

Add Research

Get your company's research in the hands of targeted business professionals.