data

Results 1 - 25 of 9802Sort Results By: Published Date | Title | Company Name
Published By: DATAVERSITY     Published Date: May 25, 2014
Deconstructing NoSQL: Analysis of a 2013 Survey on the Use, Production, and Assessment of NoSQL Technologies in the Enterprise This report examines the non-relational database environment from the viewpoints of those within the industry–whether current or future adopters, consultants, developers, business analysts, vendors, or others. This paper is sponsored by: MarkLogic, Cloudant and Neo4j.
Tags : 
research paper, analysis, nosql, database, nosql database, white paper, nosql white paper
    
DATAVERSITY
Published By: DATAVERSITY     Published Date: Nov 05, 2014
Ask any CEO if they want to better leverage their data assets to drive growth, revenues, and productivity, their answer will most likely be “yes, of course.” Ask many of them what that means or how they will do it and their answers will be as disparate as most enterprise’s data strategies. To successfully control, utilize, analyze, and store the vast amounts of data flowing through organization’s today, an enterprise-wide approach is necessary. The Chief Data Officer (CDO) is the newest member of the executive suite in many organizations worldwide. Their task is to develop and implement the strategies needed to harness the value of an enterprise’s data, while working alongside the CEO, CIO, CTO, and other executives. They are the vital “data” bridge between business and IT. This paper is sponsored by: Paxata and CA Technologies
Tags : 
chief data officer, cdo, data, data management, research paper, dataversity
    
DATAVERSITY
Published By: DATAVERSITY     Published Date: Jul 06, 2015
The growth of NoSQL data storage solutions have revolutionized the way enterprises are dealing with their data. The older, relational platforms are still being utilized by most organizations, while the implementation of varying NoSQL platforms including Key-Value, Wide Column, Document, Graph, and Hybrid data stores are increasing at faster rates than ever seen before. Such implementations are causing enterprises to revise their Data Management procedures across-the-board from governance to analytics, metadata management to software development, data modeling to regulation and compliance. The time-honored techniques for data modeling are being rewritten, reworked, and modified in a multitude of different ways, often wholly dependent on the NoSQL platform under development. The research report analyzes a 2015 DATAVERSITY® survey titled “Modeling NoSQL.” The survey examined a number of crucial issues within the NoSQL world today, with focus on data modeling in particular.
Tags : 
    
DATAVERSITY
Published By: DATAVERSITY     Published Date: Nov 20, 2015
The competitive advantages realized from a dependable Business Intelligence and Analytics (BI/A) are well documented. Everything from reduced business costs and increased customer retention to better decision making and the ability to forecast opportunities have been observed outcomes in response to such programs. The implementation of such a program remains a necessity for any growing or mature enterprise. The establishment of a comprehensive BI/A program that includes traditional Descriptive Analytics along with next generation categories such as Predictive or Prescriptive Analytics is indispensable for business success.
Tags : 
    
DATAVERSITY
Published By: DATAVERSITY     Published Date: Oct 04, 2016
This report evaluates each question posed in a recent survey and provides subsequent analysis in a detailed format that includes the most noteworthy statistics, direct comments from survey respondents, and the influence on the industry as a whole. It seeks to present readers with a thorough review of the state of Metadata Management as it exists today.
Tags : 
    
DATAVERSITY
Published By: DATAVERSITY     Published Date: Oct 12, 2017
The foundation of this report is a survey conducted by DATAVERSITY® that included a range of different question types and topics on the current state of Data Architecture. The report evaluates the topic through a discussion and analysis of each presented survey question, as well as a deeper examination of the present and future trends.
Tags : 
    
DATAVERSITY
Published By: Melissa Data     Published Date: Jan 18, 2018
Maintaining high quality data is essential for operational efficiency, meaningful analytics and good long-term customer relationships. But, when dealing with multiple sources of data, data quality becomes complex, so you need to know when you should build a custom data quality tools over canned solutions. To answer this question, it is important to understand the difference between rules-based data quality, where internal subject matter expertise is necessary – and active data quality, where different domain expertise and resources are required.
Tags : 
    
Melissa Data
Published By: Ted Hills     Published Date: Mar 08, 2017
NoSQL database management systems give us the opportunity to store our data according to more than one data storage model, but our entity-relationship data modeling notations are stuck in SQL land. Is there any need to model schema-less databases, and is it even possible? In this short white paper, Ted Hills examines these questions in light of a recent paper from MarkLogic on the hybrid data model.
Tags : 
    
Ted Hills
Published By: Ted Hills     Published Date: Mar 08, 2017
This document provides a complete reference for the Concept and Object Modeling Notation (COMN, pronounced “common”), release 1.1. The book NoSQL and SQL Data Modeling (Technics Publications, 2016) reflects release 1.0 of COMN. This is a reference, not a tutorial. This document is designed to support a quick check of how to draw or notate something in COMN.
Tags : 
    
Ted Hills
Published By: Ted Hills     Published Date: Mar 08, 2017
This paper explores the differences between three situations that appear on the surface to be very similar: a data attribute that may occur zero or one times, a data attribute that is optional, and a data attribute whose value may be unknown. It shows how each of these different situations is represented in Concept and Object Modeling Notation (COMN, pronounced “common”). The theory behind the analysis is explained in greater detail by three papers: Three-Valued Logic, A Systematic Solution to Handling Unknown Data in Databases, and An Approach to Representing Non-Applicable Data in Relational Databases.
Tags : 
    
Ted Hills
Published By: Ted Hills     Published Date: Mar 08, 2017
Ever since Codd introduced so-called “null values” to the relational model, there have been debates about exactly what they mean and their proper handling in relational databases. In this paper I examine the meaning of tuples and relations containing “null values”. For the type of “null value” representing unknown data, I propose an interpretation and a solution that is more rigorously defined than the SQL NULL or other similar solutions, and which can be implemented in a systematic and application-independent manner in database management systems.
Tags : 
    
Ted Hills
Published By: Ted Hills     Published Date: Mar 08, 2017
Ever since Codd introduced so-called “null values” to the relational model, there have been debates about exactly what they mean and their proper handling in relational databases. In this paper I examine the meaning of tuples and relations containing “null values”. For the type of “null value” representing that data are not applicable, I propose an interpretation and a solution that is more rigorously defined than the SQL NULL or other similar solutions, and which can be implemented in a systematic and application-independent manner in database management systems.
Tags : 
    
Ted Hills
Published By: WhereScape     Published Date: Oct 20, 2017
Put IT on Automatic: Cloud Data Warehousing Has Arrived by Eric Kavanagh of The Bloor Group Download this white paper to better understand the value the cloud offers IT teams developing data infrastructure, and how automation can be used to not only accelerate time to value, but to tackle quality control, compliance and developer productivity. Sponsored by WhereScape. To learn more about WhereScape automation, visitwww.wherescape.com"
Tags : 
    
WhereScape
Published By: IDERA     Published Date: Nov 07, 2017
Increasing dependence on enterprise-class applications has created a demand for centralizing organizational data using techniques such as Master Data Management (MDM). The development of a useful MDM environment is often complicated by a lack of shared organizational information and data modeling. In this paper, David Loshin explores some of the root causes that have influenced an organization’s development of a variety of data models, how that organic development has introduced potential inconsistency in structure and semantics, and how those inconsistencies complicate master data integration.
Tags : 
    
IDERA
Published By: IDERA     Published Date: Nov 07, 2017
Data modeling is all about data definition but has a much wider impact on the data of your organization. Quality data definition impacts how data is produced and directly impacts how the data is or will be used throughout an organization. That means that we must proactively govern the process of how we define data, to establish a common understanding across the team. In this whitepaper, Robert Seiner describes how data modeling is a form of data governance and provides insights on the three actions of governing data.
Tags : 
    
IDERA
Published By: Innovative Systems     Published Date: Oct 26, 2017
Even after investing significant time and resources implementing a data quality solution, many enterprises find that their data does not effectively support their goals. This white paper shows how to get the most out of your data quality solution by tailoring it to support your business goals.
Tags : 
    
Innovative Systems
Published By: AtomRain     Published Date: Nov 07, 2017
The world is more connected than ever before, and data relationships only continue to multiply. Yet enterprises still operate largely with an incomplete perspective caused by segmented, non-contextual and disconnected data silos. Connected data is the key to surviving, growing and thriving. However, a transformation across the entire enterprise won’t happen overnight, and each step must be measurable from both a business and technical perspective. Organizations need expert guidance to move more swiftly and avoid costly technical pitfalls in the new paradigm. This paper examines the journey to what we call, “The Connected Enterprise”.
Tags : 
    
AtomRain
Published By: CloverETL     Published Date: Nov 24, 2017
The volume of data is increasing by 40% per year (Source: IDC). In addition, the structure and quality of data differs vastly with a growing number of data sources. More agile ways of working with data are required. This whitepaper discusses the vast options available for managing and storing data using data architectures, and offers use cases for each architecture. Furthermore, the whitepaper explores the benefits, drawbacks and challenges of each data architecture and commonly used practices for building these architectures.
Tags : 
    
CloverETL
Published By: Syncsort     Published Date: Jan 04, 2018
The term Big Data doesn’t seem quite “big enough” anymore to properly describe the vast over-abundance of data available to organizations today. As the volume and variety of Big Data sources continue to grow, the level of trust in that data remains troublingly low. Read on and discover how a strong focus on data quality spanning the people, processes and technology of your organization will help keep your data lake pristine.
Tags : 
    
Syncsort
Published By: R2C     Published Date: Jan 05, 2018
Consistent sharing of data across organizational boundaries is often hampered by a lack of transparency, visibility, and trust in the agreements made between parties who seek to share data assets. How does an organization with cultural barriers to sharing data assets engender trust in the process? Leveraging blockchain technology that “oraclizes” data sharing agreements may provide an answer.
Tags : 
    
R2C
Published By: CA Technologies     Published Date: Oct 22, 2015
As the interest in managing information and enforcing corporate data management policies increases, data governance programs to manage data sets are becoming more and more vital to the business operation. However, in this rush for data governance programs, sometimes the true utility and importance of metadata can be missed. In this white paper, David Loshin of Knowledge Integrity, Inc. discusses the importance of data governance and the role of metadata management as a way to empower data governance and enforce data policies.
Tags : 
white paper, metadata, data management, data modeling, david loshin, data governance, data governance strategy
    
CA Technologies
Published By: Trillium Software     Published Date: Dec 17, 2015
Digital business and disruptive technologies continue to fuel solid growth in the data quality tools market, alongside traditional cost reduction and process optimization efforts. This Magic Quadrant will help CIOs, chief data officers and information leaders find the best vendor for their needs.
Tags : 
    
Trillium Software
Published By: Alation     Published Date: Jan 06, 2017
90% of the time that is spent creating new reports is recreating information that already exists. Without a way to effectively share prior work and identify verified data sources, analysts and other data consumers lack shared context on how to apply data to analytic inquiries and business decision making. Time is wasted tracking down subject matter experts and trying to unearth tribal knowledge. Leading analytic organizations in retail, healthcare, financial services and technology are using data catalogs to help their analysts find, understand and use data appropriately. What are the 5 critical capabilities of a data catalog? Learn more here:
Tags : 
    
Alation
Published By: Alation     Published Date: Jan 06, 2017
90% of the time that is spent creating new reports is recreating information that already exists. Without a way to effectively share prior work and identify verified data sources, analysts and other data consumers lack shared context on how to apply data to analytic inquiries and business decision making. Time is wasted tracking down subject matter experts and trying to unearth tribal knowledge. Leading analytic organizations in retail, healthcare, financial services and technology are using data catalogs to help their analysts find, understand and use data appropriately. What are the 5 critical capabilities of a data catalog? Learn more here:
Tags : 
    
Alation
Published By: Trillium Software     Published Date: Oct 26, 2015
Acting Quickly – Or Not at All The pace of business is accelerating. Enterprises must do more things, do them more quickly – and then adjust to market and competitive forces and do them differently. They must adapt in order to remain differentiated, and with that differentiation, hopefully build and sustain competitive advantage.
Tags : 
    
Trillium Software
Start   Previous   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15    Next    End
Search      

Add Research

Get your company's research in the hands of targeted business professionals.