enterprise

Results 1 - 25 of 5681Sort Results By: Published Date | Title | Company Name
Published By: DATAVERSITY     Published Date: May 25, 2014
Deconstructing NoSQL: Analysis of a 2013 Survey on the Use, Production, and Assessment of NoSQL Technologies in the Enterprise This report examines the non-relational database environment from the viewpoints of those within the industry–whether current or future adopters, consultants, developers, business analysts, vendors, or others. This paper is sponsored by: MarkLogic, Cloudant and Neo4j.
Tags : 
research paper, analysis, nosql, database, nosql database, white paper, nosql white paper
    
DATAVERSITY
Published By: DATAVERSITY     Published Date: Nov 05, 2014
Ask any CEO if they want to better leverage their data assets to drive growth, revenues, and productivity, their answer will most likely be “yes, of course.” Ask many of them what that means or how they will do it and their answers will be as disparate as most enterprise’s data strategies. To successfully control, utilize, analyze, and store the vast amounts of data flowing through organization’s today, an enterprise-wide approach is necessary. The Chief Data Officer (CDO) is the newest member of the executive suite in many organizations worldwide. Their task is to develop and implement the strategies needed to harness the value of an enterprise’s data, while working alongside the CEO, CIO, CTO, and other executives. They are the vital “data” bridge between business and IT. This paper is sponsored by: Paxata and CA Technologies
Tags : 
chief data officer, cdo, data, data management, research paper, dataversity
    
DATAVERSITY
Published By: DATAVERSITY     Published Date: Jul 06, 2015
The growth of NoSQL data storage solutions have revolutionized the way enterprises are dealing with their data. The older, relational platforms are still being utilized by most organizations, while the implementation of varying NoSQL platforms including Key-Value, Wide Column, Document, Graph, and Hybrid data stores are increasing at faster rates than ever seen before. Such implementations are causing enterprises to revise their Data Management procedures across-the-board from governance to analytics, metadata management to software development, data modeling to regulation and compliance. The time-honored techniques for data modeling are being rewritten, reworked, and modified in a multitude of different ways, often wholly dependent on the NoSQL platform under development. The research report analyzes a 2015 DATAVERSITY® survey titled “Modeling NoSQL.” The survey examined a number of crucial issues within the NoSQL world today, with focus on data modeling in particular.
Tags : 
    
DATAVERSITY
Published By: DATAVERSITY     Published Date: Nov 20, 2015
The competitive advantages realized from a dependable Business Intelligence and Analytics (BI/A) are well documented. Everything from reduced business costs and increased customer retention to better decision making and the ability to forecast opportunities have been observed outcomes in response to such programs. The implementation of such a program remains a necessity for any growing or mature enterprise. The establishment of a comprehensive BI/A program that includes traditional Descriptive Analytics along with next generation categories such as Predictive or Prescriptive Analytics is indispensable for business success.
Tags : 
    
DATAVERSITY
Published By: IDERA     Published Date: Nov 07, 2017
Increasing dependence on enterprise-class applications has created a demand for centralizing organizational data using techniques such as Master Data Management (MDM). The development of a useful MDM environment is often complicated by a lack of shared organizational information and data modeling. In this paper, David Loshin explores some of the root causes that have influenced an organization’s development of a variety of data models, how that organic development has introduced potential inconsistency in structure and semantics, and how those inconsistencies complicate master data integration.
Tags : 
    
IDERA
Published By: Innovative Systems     Published Date: Oct 26, 2017
Even after investing significant time and resources implementing a data quality solution, many enterprises find that their data does not effectively support their goals. This white paper shows how to get the most out of your data quality solution by tailoring it to support your business goals.
Tags : 
    
Innovative Systems
Published By: AtomRain     Published Date: Nov 07, 2017
The world is more connected than ever before, and data relationships only continue to multiply. Yet enterprises still operate largely with an incomplete perspective caused by segmented, non-contextual and disconnected data silos. Connected data is the key to surviving, growing and thriving. However, a transformation across the entire enterprise won’t happen overnight, and each step must be measurable from both a business and technical perspective. Organizations need expert guidance to move more swiftly and avoid costly technical pitfalls in the new paradigm. This paper examines the journey to what we call, “The Connected Enterprise”.
Tags : 
    
AtomRain
Published By: CloverETL     Published Date: Nov 24, 2017
The volume of data is increasing by 40% per year (Source: IDC). In addition, the structure and quality of data differs vastly with a growing number of data sources. More agile ways of working with data are required. This whitepaper discusses the vast options available for managing and storing data using data architectures, and offers use cases for each architecture. Furthermore, the whitepaper explores the benefits, drawbacks and challenges of each data architecture and commonly used practices for building these architectures.
Tags : 
    
CloverETL
Published By: Trillium Software     Published Date: Oct 26, 2015
Acting Quickly – Or Not at All The pace of business is accelerating. Enterprises must do more things, do them more quickly – and then adjust to market and competitive forces and do them differently. They must adapt in order to remain differentiated, and with that differentiation, hopefully build and sustain competitive advantage.
Tags : 
    
Trillium Software
Published By: SAP     Published Date: May 19, 2016
SAP® solutions for enterprise information management (EIM) support the critical abilities to architect, integrate, improve, manage, associate, and archive all information. By effectively managing enterprise information, your organization can improve its business outcomes. You can better understand and retain customers, work better with suppliers, achieve compliance while controlling risk, and provide internal transparency to drive operational and strategic decisions.
Tags : 
    
SAP
Published By: First San Francisco Partners     Published Date: Mar 03, 2017
Getting people successfully through a new enterprise information management (EIM) initiative requires a focus on the change’s impact to your organization’s data culture, processes and policies.
Tags : 
    
First San Francisco Partners
Published By: Couchbase     Published Date: Dec 04, 2014
Interactive applications have changed dramatically over the last 15 years. In the late ‘90s, large web companies emerged with dramatic increases in scale on many dimensions: · The number of concurrent users skyrocketed as applications increasingly became accessible · via the web (and later on mobile devices). · The amount of data collected and processed soared as it became easier and increasingly · valuable to capture all kinds of data. · The amount of unstructured or semi-structured data exploded and its use became integral · to the value and richness of applications. Dealing with these issues was more and more difficult using relational database technology. The key reason is that relational databases are essentially architected to run a single machine and use a rigid, schema-based approach to modeling data. Google, Amazon, Facebook, and LinkedIn were among the first companies to discover the serious limitations of relational database technology for supporting these new application requirements. Commercial alternatives didn’t exist, so they invented new data management approaches themselves. Their pioneering work generated tremendous interest because a growing number of companies faced similar problems. Open source NoSQL database projects formed to leverage the work of the pioneers, and commercial companies associated with these projects soon followed. Today, the use of NoSQL technology is rising rapidly among Internet companies and the enterprise. It’s increasingly considered a viable alternative to relational databases, especially as more organizations recognize that operating at scale is more effectively achieved running on clusters of standard, commodity servers, and a schema-less data model is often a better approach for handling the variety and type of data most often captured and processed today.
Tags : 
database, nosql, data, data management, white paper, why nosql, couchbase
    
Couchbase
Published By: Adaptive     Published Date: May 10, 2017
Enterprise metadata management and data quality management are two important pillars of successful enterprise data management for any organization. A well implemented enterprise metadata management platform can enable a successful data quality management at the enterprise level. This paper describes in detail an approach to integrate data quality and metadata management leveraging the Adaptive Metadata Manager platform. It explains the various levels of integrations and the benefits associated with each.
Tags : 
    
Adaptive
Published By: ASG     Published Date: May 08, 2017
One Chief Data Officer’s Story of Creating a Data-Centric Organization: ASG Enterprise Data Intelligence and American Fidelity Assurance
Tags : 
    
ASG
Published By: Embarcadero     Published Date: Oct 21, 2014
Metadata defines the structure of data in files and databases, providing detailed information about entities and objects. In this white paper, Dr. Robin Bloor and Rebecca Jowiak of The Bloor Group discuss the value of metadata and the importance of organizing it well, which enables you to: - Collaborate on metadata across your organization - Manage disparate data sources and definitions - Establish an enterprise glossary of business definitions and data elements - Improve communication between teams
Tags : 
data, data management, enterprise data management, enterprise information management, metadata, robin bloor, rebecca jozwiak, embarcadero
    
Embarcadero
Published By: Embarcadero     Published Date: Jan 23, 2015
There are multiple considerations for collaborating on metadata within an organization, and you need a good metadata strategy to define and manage the right processes for a successful implementation. In this white paper, David Loshin describes how to enhance enterprise knowledge sharing by using collaborative metadata for structure, content, and semantics.
Tags : 
data, data management, metadata, enterprise information management, data modeling, embarcadero
    
Embarcadero
Published By: MarkLogic     Published Date: Jun 17, 2015
Modern enterprises face increasing pressure to deliver business value through technological innovation that leverages all available data. At the same time, those enterprises need to reduce expenses to stay competitive, deliver results faster to respond to market demands, use real-time analytics so users can make informed decisions, and develop new applications with enhanced developer productivity. All of these factors put big data at the top of the agenda. Unfortunately, the promise of big data has often failed to deliver. With the growing volumes of unstructured and multi-structured data flooding into our data centers, the relational databases that enterprises have relied on for the last 40-years are now too limiting and inflexible. New-generation NoSQL (“Not Only SQL”) databases have gained popularity because they are ideally suited to deal with the volume, velocity, and variety of data that businesses and governments handle today.
Tags : 
data, data management, databse, marklogic, column store, wide column store, nosql
    
MarkLogic
Published By: TopQuadrant     Published Date: Mar 21, 2015
Data management is becoming more and more central to the business model of enterprises. The time when data was looked at as little more than the byproduct of automation is long gone, and today we see enterprises vigorously engaged in trying to unlock maximum value from their data, even to the extent of directly monetizing it. Yet, many of these efforts are hampered by immature data governance and management practices stemming from a legacy that did not pay much attention to data. Part of this problem is a failure to understand that there are different types of data, and each type of data has its own special characteristics, challenges and concerns. Reference data is a special type of data. It is essentially codes whose basic job is to turn other data into meaningful business information and to provide an informational context for the wider world in which the enterprise functions. This paper discusses the challenges associated with implementing a reference data management solution and the essential components of any vision for the governance and management of reference data. It covers the following topics in some detail: · What is reference data? · Why is reference data management important? · What are the challenges of reference data management? · What are some best practices for the governance and management of reference data? · What capabilities should you look for in a reference data solution?
Tags : 
data management, data, reference data, reference data management, top quadrant, malcolm chisholm
    
TopQuadrant
Published By: TopQuadrant     Published Date: Jun 01, 2017
This paper presents a practitioner informed roadmap intended to assist enterprises in maturing their Enterprise Information Management (EIM) practices, with a specific focus on improving Reference Data Management (RDM). Reference data is found in every application used by an enterprise including back-end systems, front-end commerce applications, data exchange formats, and in outsourced, hosted systems, big data platforms, and data warehouses. It can easily be 20–50% of the tables in a data store. And the values are used throughout the transactional and mastered data sets to make the system internally consistent.
Tags : 
    
TopQuadrant
Published By: CA Technologies     Published Date: Apr 24, 2013
Using ERwin Data Modeler & Microsoft SQL Azure to Move Data to the Cloud within the DaaS Lifecycle by Nuccio Piscopo Cloud computing is one of the major growth areas in the world of IT. This article provides an analysis of how to apply the DaaS (Database as a Service) lifecycle working with ERwin and the SQL Azure platform. It should help enterprises to obtain the benefits of DaaS and take advantage of its potential for improvement and transformation of data models in the Cloud. The use case introduced identifies key actions, requirements and practices that can support activities to help formulate a plan for successfully moving data to the Cloud.
Tags : 
    
CA Technologies
Published By: CA Technologies     Published Date: Dec 03, 2015
This 2nd paper in a 3-part series by David Loshin explores some challenges in bootstrapping a data governance program, and then considers key methods for using metadata to establish the starting point for data governance. The paper will focus on how metadata management facilitates progress along three facets of the data governance program including assessment, collaboration and operationalization.
Tags : 
    
CA Technologies
Published By: CA Technologies     Published Date: Feb 25, 2016
As combinations of both internal and externally-imposed business policies imply dependencies on managed data artifacts, organizations are increasingly instituting data governance programs to implement processes for ensuring compliance with business expectations. One fundamental aspect of data governance involves practical application of business rules to data assets based on data elements and their assigned values. Yet despite the intent of harmonizing data element definitions and resolution of data semantics and valid reference values, most organizations rarely have complete visibility into the metadata associated with enterprise data assets.
Tags : 
    
CA Technologies
Published By: MapR Technologies     Published Date: Mar 29, 2016
Add Big Data Technologies to Get More Value from Your Stack Taking advantage of big data starts with understanding how to optimize and augment your existing infrastructure. Relational databases have endured for a reason – they fit well with the types of data that organizations use to run their business. These types of data in business applications such as ERP, CRM, EPM, etc., are not fundamentally changing, which suggests that relational databases will continue to play a foundational role in enterprise architectures for the foreseeable future. One area where emerging technologies can complement relational database technologies is big data. With the rapidly growing volumes of data, along with the many new sources of data, organizations look for ways to relieve pressure from their existing systems. That’s where Hadoop and NoSQL come in.
Tags : 
    
MapR Technologies
Published By: Cambridge Semantics     Published Date: Mar 13, 2015
As the quantity and diversity of relevant data grows within and outside the enterprise, how can IT easily deploy secure governed solutions that allow business users to identify, extract, link together and derive value from the right data at the right time, at big data scale, while keeping up with ever changing business needs? Smart Enterprise Data Management (Smart EDM) is new, sensible paradigm for managing enterprise data. Anzo Smart Data solutions allow IT departments and their business users to quickly and flexibly access all of their diverse data. Based upon graph data models and Semantic data standards, Anzo enables users to easily perform advanced data management and analytics through the lens of their business at a fraction of the time and cost of traditional approaches, while adhering to the governance and security required by enterprise IT groups. Download this whitepaper to learn more.
Tags : 
enterprise data management, data governance, data integration, cambridge semantics
    
Cambridge Semantics
Published By: Cambridge Semantics     Published Date: Aug 17, 2015
As the quantity and diversity of relevant data grows within and outside of the enterprise, business users and IT are struggling to extract maximum value from this data. Current approaches, including the rigid relational data warehouse and the unwieldy Hadoop-only Data Lake, are limited in their ability to provide users and IT with the answers they need with the proper governance and security required. Read this whitepaper to learn how The Anzo Smart Data Lake from Cambridge Semantics solves these problems by disrupting the way IT and business alike manage and analyze data at enterprise scale with unprecedented flexibility, insight and speed.
Tags : 
    
Cambridge Semantics
Start   Previous   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15    Next    End
Search      

Add Research

Get your company's research in the hands of targeted business professionals.