lineage

Results 1 - 20 of 20Sort Results By: Published Date | Title | Company Name
Published By: ASG     Published Date: Apr 02, 2014
This Case Study focuses on a highly successful data lineage project between ASG Software Solutions and a major global financial institution. The initial project which began in 2011 with the primary goal of achieving greater control, awareness, and ownership over the institution’s data assets due to new regulatory and federal audit controls. As the project progressed and the positive relationship between ASG and the Bank deepened, all stakeholders involved began to see much broader potential for the entire project than originally envisioned.
Tags : 
metadata, data, data management, white paper, case study
    
ASG
Published By: Reltio     Published Date: May 22, 2018
"Forrester's research uncovered a market in which Reltio [and other companies] lead the pack,” the Forrester Wave Master Data Management states. "Leaders demonstrated extensive and MDM capabilities for sophisticated master data scenarios, large complex ecosystems, and data governance to deliver enterprise-scale business value.” Reltio executes the vision for next-generation MDM by converging trusted data management with business insight solutions at scale and in the cloud. Machine learning and graph technology capabilities enable a contextual data model while also maintaining temporal and lineage changes of the master data.
Tags : 
    
Reltio
Published By: ROKITT     Published Date: Apr 11, 2016
Few things benefit an organization as much as information governance. Data is now one of the most valuable holdings for any business, but unfortunately in many environments much of the data is ignored and its potential value lost. Ignored data is also inherently less secure than data that’s tracked. Businesses need a way to bring hidden data out of the shadows and make it safe and useful again. Data discovery facilitates unearthing previously unknown data relationships. Mapping data flow and data lineage helps make data safe, compliant, and auditable. Good metadata makes a system more navigable. All these tools make data more accessible to staff and more useful for capitalizing on business opportunities.
Tags : 
    
ROKITT
Published By: Octopai     Published Date: Sep 01, 2018
For many BI professionals, every task can feel like MISSION IMPOSSIBLE. All the manual mapping required to sort out inconsistencies in data and the lack of tools to simplify and shorten the process of finding and understanding data leaves BI groups frustrated and slows down the business. This whitepaper examines the revolutionary impact of automation on the cumbersome manual processes that have been dragging BI down for so long. • Data correction vs process correction • Root-cause analysis with data lineage: reverse-tracing the data flow • Data quality rules and data controls • Automated data lineage mapping
Tags : 
    
Octopai
Published By: Dell EMC     Published Date: Oct 08, 2015
In order to protect big data today, organizations must have solutions that address four key areas: authentication, authorization, audit and lineage, and compliant data protection.
Tags : 
    
Dell EMC
Published By: IBM     Published Date: Apr 18, 2017
Learn from this TDWI paper how right-sized information governance can improve the success of data warehousing or big data analytics initiatives, and how a chief data officer can help organizations to appreciate the value of data and its importance to their decisions and operations.
Tags : 
system integration, data governance, data optimization, data efficiency, data currency, data lineage, data security, data integration
    
IBM
Published By: Group M_IBM Q418     Published Date: Oct 15, 2018
The enterprise data warehouse (EDW) has been at the cornerstone of enterprise data strategies for over 20 years. EDW systems have traditionally been built on relatively costly hardware infrastructures. But ever-growing data volume and increasingly complex processing have raised the cost of EDW software and hardware licenses while impacting the performance needed for analytic insights. Organizations can now use EDW offloading and optimization techniques to reduce costs of storing, processing and analyzing large volumes of data. Getting data governance right is critical to your business success. That means ensuring your data is clean, of excellent quality, and of verifiable lineage. Such governance principles can be applied in Hadoop-like environments. Hadoop is designed to store, process and analyze large volumes of data at significantly lower cost than a data warehouse. But to get the return on investment, you must infuse data governance processes as part of offloading.
Tags : 
    
Group M_IBM Q418
Published By: MarkLogic     Published Date: Mar 29, 2018
Executives, managers, and users will not trust data unless they understand where it came from. Enterprise metadata is the “data about data” that makes this trust possible. Unfortunately, many healthcare and life sciences organizations struggle to collect and manage metadata with their existing relational and column-family technology tools. MarkLogic’s multi-model architecture makes it easier to manage metadata, and build trust in the quality and lineage of enterprise data. Healthcare and life sciences companies are using MarkLogic’s smart metadata management capabilities to improve search and discovery, simplify regulatory compliance, deliver more accurate and reliable quality reports, and provide better customer service. This paper explains the essence and advantages of the MarkLogic approach.
Tags : 
enterprise, metadata, management, organizations, technology, tools, mark logic
    
MarkLogic
Published By: MarkLogic     Published Date: May 07, 2018
Executives, managers, and users will not trust data unless they understand where it came from. Enterprise metadata is the “data about data” that makes this trust possible. Unfortunately, many healthcare and life sciences organizations struggle to collect and manage metadata with their existing relational and column-family technology tools. MarkLogic’s multi-model architecture makes it easier to manage metadata, and build trust in the quality and lineage of enterprise data. Healthcare and life sciences companies are using MarkLogic’s smart metadata management capabilities to improve search and discovery, simplify regulatory compliance, deliver more accurate and reliable quality reports, and provide better customer service. This paper explains the essence and advantages of the MarkLogic approach.
Tags : 
agile, enterprise, metadata, management, organization
    
MarkLogic
Published By: Infosys     Published Date: May 21, 2018
Good coffee is more than just a drink - it's an art. And coffee connoisseurs (distributors, retailers, and consumers) want to be sure of the authenticity of the art they buy. But given the complex supply chain and the number of stakeholders involved in getting coffee from the far to the cup, it is almost impossible to ascertain the lineage, health, and origin of your coffee.
Tags : 
blockchain, finance, distributors, retailers, consumers
    
Infosys
Published By: Infosys     Published Date: Feb 11, 2019
Good coffee is more than just a drink - it's an art. And coffee connoisseurs (distributors, retailers, and consumers) want to be sure of the authenticity of the art they buy. But given the complex supply chain and the number of stakeholders involved in getting coffee from the farm to the cup, it is almost impossible to ascertain the lineage, health, and origin of your coffee.
Tags : 
    
Infosys
Published By: SAS     Published Date: Mar 14, 2014
This Q&A with Tom Davenport, Director of Research for the International Institute for Analytics (IIA), will help you understand how analytics is evolving, where you need to go, and how to get there.
Tags : 
sas, data categorization, retrieval and quality, data visualization, data governance program, data management, data quality, business objectives, quality data, accuracy, lineage, structural consistency, relevant metrics, analytics, analytical study, visualization deployment, deployment, institute for analytics, analytical applications, business intelligence
    
SAS
Published By: SAS     Published Date: Mar 14, 2014
This paper explores the challenges organizations have today in implementing a data governance program via an actual business case. It highlights SAS technology that can help you solve many of those challenges.
Tags : 
sas, data categorization, retrieval and quality, data visualization, data governance program, data management, data quality, business objectives, quality data, accuracy, lineage, structural consistency, relevant metrics, business relevance, visualization deployment, deployment, institute for analytics, data center
    
SAS
Published By: SAS     Published Date: Mar 14, 2014
This report examines how data visualization can help organizations unleash the full value of information, and outlines key considerations to guide the solution evaluation process.
Tags : 
sas, data categorization, retrieval and quality, data visualization, data governance program, data management, data quality, business objectives, quality data, accuracy, lineage, structural consistency, relevant metrics, business relevance, visualization deployment, deployment, institute for analytics, data center
    
SAS
Published By: SAS     Published Date: Mar 14, 2014
Managing expectations before, during and after the adoption of visualization software is crucial. Users should know what the rollout process will look like and how it will take place, and have clear goals for using the tool. Make sure that the desired outcome isn’t just look-and-feel. Creating beautiful charts and graphs is not a substitute for practical business decisions.
Tags : 
sas, data categorization, retrieval and quality, data visualization, data governance program, data management, data quality, business objectives, quality data, accuracy, lineage, structural consistency, relevant metrics, business relevance, visualization deployment, deployment, institute for analytics, data center
    
SAS
Published By: SAS     Published Date: Mar 14, 2014
This paper explores ways to qualify data control and measures to support the governance program. It will examine how data management practitioners can define metrics that are relevant.
Tags : 
sas, data quality, business objectives, quality data, accuracy, lineage, structural consistency, relevant metrics, business relevance, measured value, emergent patterns, quality metrics, potential classifications, data analyst, scorecard, reporting the scorecard, improve scorecard, business process
    
SAS
Published By: SAS     Published Date: Mar 14, 2014
This paper will consider the relevance of measurement and monitoring – defining inspection routines, inserting them into the end-to-end application processing, and reporting the results.
Tags : 
sas, data quality, business objectives, quality data, accuracy, lineage, structural consistency, relevant metrics, business relevance, measured value, emergent patterns, quality metrics, potential classifications, data analyst, scorecard, reporting the scorecard, improve scorecard, business process, data center
    
SAS
Published By: SAS     Published Date: Mar 14, 2014
Jill Dyche and SpectraDynamo explains the importance of understanding how to manage data and issues regarding data categorization, retrieval and quality.
Tags : 
sas, data categorization, retrieval and quality, spectradynamo, telemetry data, data governance program, data management, data quality, business objectives, quality data, accuracy, lineage, structural consistency, relevant metrics, business relevance, measured value, emergent patterns, quality metrics, data center
    
SAS
Published By: Infosys     Published Date: Feb 07, 2019
Good coffee is more than just a drink - it's an art. and coffee connoisseurs (distributors, retailers, and consumers) want to be sure of the authenticity of the art they buy. But given the complex supply chain and the number of stakeholders involved in getting coffee from the farm to the cup, it is almost impossible to ascertain the lineage, health, and origin of your coffee.
Tags : 
    
Infosys
Published By: IBM     Published Date: Jul 05, 2018
IBM® Information Governance Catalog helps you understand your information and foster collaboration between business and IT by establishing a common business vocabulary on the front end, and managing data lineage on the back end. By leveraging the comprehensive capabilities in Information Governance Catalog, you are better able to align IT with your business goals. Information Governance Catalog helps organizations build and maintain a strong data governance and stewardship program that can turn data into trusted information. This trusted information can be leveraged in various information integration and governance projects, including big data integration, master data management (MDM), lifecycle management, and security and privacy initiatives. In addition, Information Governance Catalog allows business users to play an active role in information-centric projects and to collaborate with their IT teams without the need for technical training. This level of governance and collaboration c
Tags : 
    
IBM
Search      

Add Research

Get your company's research in the hands of targeted business professionals.

We use technologies such as cookies to understand how you use our site and to provide a better user experience. This includes personalizing content, using analytics and improving site operations. We may share your information about your use of our site with third parties in accordance with our Privacy Policy. You can change your cookie settings as described here at any time, but parts of our site may not function correctly without them. By continuing to use our site, you agree that we can save cookies on your device, unless you have disabled cookies.
I Accept