oce

Results 1 - 25 of 4906Sort Results By: Published Date | Title | Company Name
Published By: Databricks     Published Date: Sep 13, 2018
Learn how to get started with Apache Spark™ Apache Spark™’s ability to speed analytic applications by orders of magnitude, its versatility, and ease of use are quickly winning the market. With Spark’s appeal to developers, end users, and integrators to solve complex data problems at scale, it is now the most active open source project with the big data community. With rapid adoption by enterprises across a wide range of industries, Spark has been deployed at massive scale, collectively processing multiple petabytes of data on clusters of over 8,000 nodes. If you are a developer or data scientist interested in big data, learn how Spark may be the tool for you. Databricks is happy to present this ebook as a practical introduction to Spark. Download this ebook to learn: • Spark’s basic architecture • Why Spark is a popular choice for data analytics • What tools and features are available • How to get started right away through interactive sample code
Tags : 
    
Databricks
Published By: DATAVERSITY     Published Date: Jul 06, 2015
The growth of NoSQL data storage solutions have revolutionized the way enterprises are dealing with their data. The older, relational platforms are still being utilized by most organizations, while the implementation of varying NoSQL platforms including Key-Value, Wide Column, Document, Graph, and Hybrid data stores are increasing at faster rates than ever seen before. Such implementations are causing enterprises to revise their Data Management procedures across-the-board from governance to analytics, metadata management to software development, data modeling to regulation and compliance. The time-honored techniques for data modeling are being rewritten, reworked, and modified in a multitude of different ways, often wholly dependent on the NoSQL platform under development. The research report analyzes a 2015 DATAVERSITY® survey titled “Modeling NoSQL.” The survey examined a number of crucial issues within the NoSQL world today, with focus on data modeling in particular.
Tags : 
    
DATAVERSITY
Published By: Wave Computing     Published Date: Jul 06, 2018
This paper argues a case for the use of coarse grained reconfigurable array (CGRA) architectures for the efficient acceleration of the data flow computations used in deep neural network training and inferencing. The paper discusses the problems with other parallel acceleration systems such as massively parallel processor arrays (MPPAs) and heterogeneous systems based on CUDA and OpenCL, and proposes that CGRAs with autonomous computing features deliver improved performance and computational efficiency. The machine learning compute appliance that Wave Computing is developing executes data flow graphs using multiple clock-less, CGRA-based System on Chips (SoCs) each containing 16,000 processing elements (PEs). This paper describes the tools needed for efficient compilation of data flow graphs to the CGRA architecture, and outlines Wave Computing’s WaveFlow software (SW) framework for the online mapping of models from popular workflows like Tensorflow, MXNet and Caffe.
Tags : 
    
Wave Computing
Published By: TD Bank Group     Published Date: Aug 10, 2018
This paper examines whether blockchain distributed ledger technology could improve the management of trusted information, specifically considering data quality. Improvement was determined by considering the impact of a distributed ledger as an authoritative source in TD Bank Group's Enterprise Data Quality Management Process versus the use of standard authoritative sources such as databases and files. Distributed ledger technology is not expected, or proven, to result in a change in the Data Quality Management process. Our analysis focused on execution advantages possible due to distributed ledger properties that make it an attractive resource for data quality management (DQM).
Tags : 
    
TD Bank Group
Published By: Attunity     Published Date: Sep 21, 2018
Apache NiFi is an easy to use, powerful, and reliable system to process and distribute data. It provides an end-to-end platform that can collect, curate, analyze, and act on data in real-time, on-premises, or in the cloud with a drag-and-drop visual interface. This book offers you an overview of NiFi along with common use cases to help you get started, debug, and manage your own dataflows.
Tags : 
    
Attunity
Published By: graphgrid     Published Date: Oct 19, 2018
Graph databases are about to catapult across the famous technology adoption chasm and land in start-ups, enterprises and government agencies across the globe. The adoption antibodies are subsiding as the power of natively connected data becomes fundamental to any organization looking for data-driven insights across operations, suppliers, and customers. Moore’s Law increases in storage capacity and processing power can no longer keep up with the pace of data expansion, yet how companies structure and analyze their data ultimately will impact their ability to compete. Unstructured, disconnected data is useless. Graph databases will rapidly jump from niche use cases to a transformative IT technology as they enable turning the data you collect into actionable insights. Data will become the single most differentiating asset for your organization.
Tags : 
    
graphgrid
Published By: DATAVERSITY     Published Date: Jun 14, 2013
This report analyzes many challenges faced when beginning a new Data Governance program, and outlines many crucial elements in successfully executing such a program. “Data Governance” is a term fraught with nuance, misunderstanding, myriad opinions, and fear. It is often enough to keep Data Stewards and senior executives awake late into the night. The modern enterprise needs reliable and sustainable control over its technological systems, business processes, and data assets. Such control is tantamount to competitive success in an ever-changing marketplace driven by the exponential growth of data, mobile computing, social networking, the need for real-time analytics and reporting mechanisms, and increasing regulatory compliance requirements. Data Governance can enhance and buttress (or resuscitate, if needed) the strategic and tactical business drivers every enterprise needs for market success. This paper is sponsored by: ASG, DGPO and DebTech International.
Tags : 
data, data management, data governance, data steward, dataversity, research paper
    
DATAVERSITY
Published By: DATAVERSITY     Published Date: Dec 27, 2013
There are actually many elements of such a vision that are working together. ACID and NoSQL are not the antagonists they were once thought to be; NoSQL works well under a BASE model, but also some of the innovative NoSQL systems fully conform to ACID requirements. Database engineers have puzzled out how to get non-relational systems to work within an environment that demands high availability, scalability, with differing levels of recovery and partition tolerance. BASE is still a leading innovation that is wedded to the NoSQL model, and the evolution of both together is harmonious. But that doesn’t mean they always have to be in partnership; there are several options. So while the opening anecdote is true in many cases, organizations that need more diverse possibilities can move into the commercial arena and get the specific option that works best for them. This paper is sponsored by: MarkLogic.
Tags : 
nosql, database, acid v base, white paper
    
DATAVERSITY
Published By: Trillium Software     Published Date: Dec 17, 2015
Digital business and disruptive technologies continue to fuel solid growth in the data quality tools market, alongside traditional cost reduction and process optimization efforts. This Magic Quadrant will help CIOs, chief data officers and information leaders find the best vendor for their needs.
Tags : 
    
Trillium Software
Published By: First San Francisco Partners     Published Date: Sep 03, 2014
This white paper discusses how awareness, ownership and accountability are key to activating and engaging people to adopt new data governance initiatives and the related policies and processes. It provides you with information on how your organization can ensure that the data stewards adopt the new data governance policies and processes.
Tags : 
data, data management, data governance, data governance program
    
First San Francisco Partners
Published By: First San Francisco Partners     Published Date: Mar 03, 2017
Getting people successfully through a new enterprise information management (EIM) initiative requires a focus on the change’s impact to your organization’s data culture, processes and policies.
Tags : 
    
First San Francisco Partners
Published By: Couchbase     Published Date: Dec 04, 2014
Interactive applications have changed dramatically over the last 15 years. In the late ‘90s, large web companies emerged with dramatic increases in scale on many dimensions: · The number of concurrent users skyrocketed as applications increasingly became accessible · via the web (and later on mobile devices). · The amount of data collected and processed soared as it became easier and increasingly · valuable to capture all kinds of data. · The amount of unstructured or semi-structured data exploded and its use became integral · to the value and richness of applications. Dealing with these issues was more and more difficult using relational database technology. The key reason is that relational databases are essentially architected to run a single machine and use a rigid, schema-based approach to modeling data. Google, Amazon, Facebook, and LinkedIn were among the first companies to discover the serious limitations of relational database technology for supporting these new application requirements. Commercial alternatives didn’t exist, so they invented new data management approaches themselves. Their pioneering work generated tremendous interest because a growing number of companies faced similar problems. Open source NoSQL database projects formed to leverage the work of the pioneers, and commercial companies associated with these projects soon followed. Today, the use of NoSQL technology is rising rapidly among Internet companies and the enterprise. It’s increasingly considered a viable alternative to relational databases, especially as more organizations recognize that operating at scale is more effectively achieved running on clusters of standard, commodity servers, and a schema-less data model is often a better approach for handling the variety and type of data most often captured and processed today.
Tags : 
database, nosql, data, data management, white paper, why nosql, couchbase
    
Couchbase
Published By: Embarcadero     Published Date: Jan 23, 2015
There are multiple considerations for collaborating on metadata within an organization, and you need a good metadata strategy to define and manage the right processes for a successful implementation. In this white paper, David Loshin describes how to enhance enterprise knowledge sharing by using collaborative metadata for structure, content, and semantics.
Tags : 
data, data management, metadata, enterprise information management, data modeling, embarcadero
    
Embarcadero
Published By: MarkLogic     Published Date: Aug 04, 2014
The Age of Information and the associated growth of the World Wide Web has brought with it a new problem: how to actually make sense of all the information available. The overarching goal of the Semantic Web is to change that. Semantic Web technologies accomplish this goal by providing a universal framework to describe and link data so that it can be better understood and searched holistically, allowing both people and computers to see and discover relationships in the data. Today, organizations are leveraging the power of the Semantic Web to aggregate and link disparate data, improve search navigation, provide holistic search and discovery, dynamically publish content, and complete ETL processes faster. Read this white paper to gain insight into why Semantics is important, understand how Semantics works, and see examples of Semantics in practice.
Tags : 
data, data management, whitepaper, marklogic, semantic, semantic technology, nosql, database, semantic web, big data
    
MarkLogic
Published By: CA Technologies     Published Date: Feb 25, 2016
As combinations of both internal and externally-imposed business policies imply dependencies on managed data artifacts, organizations are increasingly instituting data governance programs to implement processes for ensuring compliance with business expectations. One fundamental aspect of data governance involves practical application of business rules to data assets based on data elements and their assigned values. Yet despite the intent of harmonizing data element definitions and resolution of data semantics and valid reference values, most organizations rarely have complete visibility into the metadata associated with enterprise data assets.
Tags : 
    
CA Technologies
Published By: Paxata     Published Date: Apr 02, 2014
Why Sift Through Data Landfills? Better business insight comes from data - but data is often dirty, incomplete and complicated. As any analyst would admit, what passes for data science is more like janitorial work. Find out why that is - and how you can avoid the painful, manual and error-prone processes that have bogged down the analytics process for 30 years.
Tags : 
data, data management, big data, white paper, paxata, analytics
    
Paxata
Published By: Cambridge Semantics     Published Date: May 11, 2016
With the explosive growth of Big Data, IT professionals find their time and resources squeezed between managing increasingly large and diverse siloed data stores and increased user demands for timely, accurate data. The graph-based ANZO Smart Data Manager is built to relieve these burdens by automating the process of managing, cataloging and governing data at enterprise scale and security. Anzo Smart Data Manager allows companies to truly understand their data ecosystems and leverage the metadata within it.
Tags : 
    
Cambridge Semantics
Published By: MemSQL     Published Date: Jun 25, 2014
Emerging business innovations focused on realizing quick business value on new and growing data sources require “hybrid transactional and analytical processing” (HTAP), the notion of performing analysis on data directly in an operational data store. While this is not a new idea, Gartner reports that the potential for HTAP has not been fully realized due to technology limitations and inertia in IT departments. MemSQL offers a unique combination of performance, flexibility, and ease of use that allows companies to implement HTAP to power their business applications.
Tags : 
    
MemSQL
Published By: Pentaho     Published Date: Nov 03, 2016
While a whole ecosystem of tools has sprung up around Hadoop to handle and analyze data, many of them are specialized to just one part of a larger process. In order to fulfill the promise of Hadoop, organizations need to step back and take an end-to-end view of their analytic data pipelines.
Tags : 
    
Pentaho
Published By: Skytree     Published Date: Nov 23, 2014
Critical business information is often in the form of unstructured and semi-structured data that can be hard or impossible to interpret with legacy systems. In this brief, discover how you can use machine learning to analyze both unstructured text data and semi- structured log data, providing you with the insights needed to achieve your business goals.
Tags : 
log data, machine learning, natural language, nlp, natural language processing, skytree, unstructured data, semi-structured data, data analysis
    
Skytree
Published By: iCEDQ     Published Date: Feb 05, 2015
The demand for using data as an asset has grown to a level where data-centric applications are now the norm in enterprises. Yet data-centric applications fall short of user expectations at a high rate. Part of this is due to inadequate quality assurance. This in turn arises from trying to develop data-centric projects using the old paradigm of the SDLC, which came into existence during an age of process automation. SDLC does not fit with data-centric projects and cannot address the QA needs of these projects. Instead, a new approach is needed where analysts develop business rules to test atomic items of data quality. These rules have to be run in an automated fashion in a business rules engine. Additionally, QA has to be carried past the point of application implementation and support the running of the production environment.
Tags : 
data, data management, data warehousing, data quality, etl testing, malcolm chisholm
    
iCEDQ
Published By: AnalytixDS     Published Date: May 04, 2018
The General Data Protection Regulation (GDPR) is a regulation by which the European Parliament, the Council of the European Union and the European Commission intend to strengthen and unify data protection for all individuals within the European Union (EU). It also addresses the export of personal data outside the EU. The General Data Protection Regulation (GDPR) will go into effect from May 25 2018, making organizations accountable for personal data protection including how and where data is stored and how it is processed within the organization. Get ready for the most comprehensive governance and automation platform in the industry.
Tags : 
    
AnalytixDS
Published By: Expert System     Published Date: Mar 19, 2015
Establishing context and knowledge capture In today’s knowledge-infused world, it is vitally important for organizations of any size to deploy an intuitive knowledge platform that enables delivery of the right information at the right time, in a way that is useful and helpful. Semantic technology processes content for meaning, allowing for the ability to understand words in context: it allows for better content processing and interpretation, therefore enabling content organization and navigation, which in turn increases findability.
Tags : 
enterprise data management, unstructured data, semantic technology, expert system
    
Expert System
Published By: CapTech     Published Date: May 26, 2015
Big Data is the future of business. According to CloudTweaks.com, as much as 2.5 quintillion bytes of data are produced each day, with most of this data being captured by Big Data. With its ability to transfer all data sources all into one centralized place, Big Data provides opportunities, clearer visions, customer conversations and transactions. However, with the dazzling big promise of Big Data comes a potentially huge letdown. If this vast pool of information resources is not accessible or usable, it becomes useless. This paper examines strategies for building the most value into your Big Data system by enabling process controls to effectively mine, access and secure Big Data.
Tags : 
big data, captech, data, data management, nosql
    
CapTech
Published By: Trillium Software     Published Date: Apr 10, 2017
For the 11th consecutive year, the Gartner Magic Quadrant for Data Quality Tools1 research report positions Trillium Software as a leader in the Data Quality Software industry. Data Quality is vital to ensuring trust in your data-driven, decision making business processes. Confidence is the result of a well thought out and executed data quality management strategy and is critical to remaining competitive in a rapidly and ever-changing business world. The 2016 Gartner Magic Quadrant for Data Quality Tools report is a valuable reference, providing the latest insights into the strengths and cautions of leading vendors. Access the report to learn how a leading data quality solution can help you achieve your long-term strategic objectives.
Tags : 
    
Trillium Software
Start   Previous   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15    Next    End
Search      

Add Research

Get your company's research in the hands of targeted business professionals.