red hat

Results 1 - 25 of 2192Sort Results By: Published Date | Title | Company Name
Published By: DATAVERSITY     Published Date: Nov 20, 2015
The competitive advantages realized from a dependable Business Intelligence and Analytics (BI/A) are well documented. Everything from reduced business costs and increased customer retention to better decision making and the ability to forecast opportunities have been observed outcomes in response to such programs. The implementation of such a program remains a necessity for any growing or mature enterprise. The establishment of a comprehensive BI/A program that includes traditional Descriptive Analytics along with next generation categories such as Predictive or Prescriptive Analytics is indispensable for business success.
Tags : 
data, data management, analytics, business intelligence, data science
    
DATAVERSITY
Published By: Io-Tahoe     Published Date: Jan 15, 2019
The white paper addresses the problem of managing data in an increasingly complex, hybrid and distributed world; acknowledging that it is too great even for highly-skilled analysts and scientists to handle alone. To solve this problem, organizations should understand why a single unified product from smart data discovery to AI-driven data catalog can vastly reduce the time it takes to do the kind of analytics that are necessary for digital transformation.
Tags : 
    
Io-Tahoe
Published By: DATAVERSITY     Published Date: Feb 27, 2013
In its most basic definition, unstructured data simply means any form of data that does not easily fit into a relational model or a set of database tables.
Tags : 
white paper, dataversity, unstructured data, enterprise data management, data, data management
    
DATAVERSITY
Published By: Alation     Published Date: Jan 06, 2017
90% of the time that is spent creating new reports is recreating information that already exists. Without a way to effectively share prior work and identify verified data sources, analysts and other data consumers lack shared context on how to apply data to analytic inquiries and business decision making. Time is wasted tracking down subject matter experts and trying to unearth tribal knowledge. Leading analytic organizations in retail, healthcare, financial services and technology are using data catalogs to help their analysts find, understand and use data appropriately. What are the 5 critical capabilities of a data catalog? Learn more here:
Tags : 
    
Alation
Published By: Alation     Published Date: Jan 06, 2017
90% of the time that is spent creating new reports is recreating information that already exists. Without a way to effectively share prior work and identify verified data sources, analysts and other data consumers lack shared context on how to apply data to analytic inquiries and business decision making. Time is wasted tracking down subject matter experts and trying to unearth tribal knowledge. Leading analytic organizations in retail, healthcare, financial services and technology are using data catalogs to help their analysts find, understand and use data appropriately. What are the 5 critical capabilities of a data catalog? Learn more here:
Tags : 
    
Alation
Published By: Couchbase     Published Date: Dec 04, 2014
Interactive applications have changed dramatically over the last 15 years. In the late ‘90s, large web companies emerged with dramatic increases in scale on many dimensions: · The number of concurrent users skyrocketed as applications increasingly became accessible · via the web (and later on mobile devices). · The amount of data collected and processed soared as it became easier and increasingly · valuable to capture all kinds of data. · The amount of unstructured or semi-structured data exploded and its use became integral · to the value and richness of applications. Dealing with these issues was more and more difficult using relational database technology. The key reason is that relational databases are essentially architected to run a single machine and use a rigid, schema-based approach to modeling data. Google, Amazon, Facebook, and LinkedIn were among the first companies to discover the serious limitations of relational database technology for supporting these new application requirements. Commercial alternatives didn’t exist, so they invented new data management approaches themselves. Their pioneering work generated tremendous interest because a growing number of companies faced similar problems. Open source NoSQL database projects formed to leverage the work of the pioneers, and commercial companies associated with these projects soon followed. Today, the use of NoSQL technology is rising rapidly among Internet companies and the enterprise. It’s increasingly considered a viable alternative to relational databases, especially as more organizations recognize that operating at scale is more effectively achieved running on clusters of standard, commodity servers, and a schema-less data model is often a better approach for handling the variety and type of data most often captured and processed today.
Tags : 
database, nosql, data, data management, white paper, why nosql, couchbase
    
Couchbase
Published By: MarkLogic     Published Date: Jun 17, 2015
Modern enterprises face increasing pressure to deliver business value through technological innovation that leverages all available data. At the same time, those enterprises need to reduce expenses to stay competitive, deliver results faster to respond to market demands, use real-time analytics so users can make informed decisions, and develop new applications with enhanced developer productivity. All of these factors put big data at the top of the agenda. Unfortunately, the promise of big data has often failed to deliver. With the growing volumes of unstructured and multi-structured data flooding into our data centers, the relational databases that enterprises have relied on for the last 40-years are now too limiting and inflexible. New-generation NoSQL (“Not Only SQL”) databases have gained popularity because they are ideally suited to deal with the volume, velocity, and variety of data that businesses and governments handle today.
Tags : 
data, data management, databse, marklogic, column store, wide column store, nosql
    
MarkLogic
Published By: TopQuadrant     Published Date: Mar 21, 2015
Data management is becoming more and more central to the business model of enterprises. The time when data was looked at as little more than the byproduct of automation is long gone, and today we see enterprises vigorously engaged in trying to unlock maximum value from their data, even to the extent of directly monetizing it. Yet, many of these efforts are hampered by immature data governance and management practices stemming from a legacy that did not pay much attention to data. Part of this problem is a failure to understand that there are different types of data, and each type of data has its own special characteristics, challenges and concerns. Reference data is a special type of data. It is essentially codes whose basic job is to turn other data into meaningful business information and to provide an informational context for the wider world in which the enterprise functions. This paper discusses the challenges associated with implementing a reference data management solution and the essential components of any vision for the governance and management of reference data. It covers the following topics in some detail: · What is reference data? · Why is reference data management important? · What are the challenges of reference data management? · What are some best practices for the governance and management of reference data? · What capabilities should you look for in a reference data solution?
Tags : 
data management, data, reference data, reference data management, top quadrant, malcolm chisholm
    
TopQuadrant
Published By: MapR Technologies     Published Date: Mar 29, 2016
Add Big Data Technologies to Get More Value from Your Stack Taking advantage of big data starts with understanding how to optimize and augment your existing infrastructure. Relational databases have endured for a reason – they fit well with the types of data that organizations use to run their business. These types of data in business applications such as ERP, CRM, EPM, etc., are not fundamentally changing, which suggests that relational databases will continue to play a foundational role in enterprise architectures for the foreseeable future. One area where emerging technologies can complement relational database technologies is big data. With the rapidly growing volumes of data, along with the many new sources of data, organizations look for ways to relieve pressure from their existing systems. That’s where Hadoop and NoSQL come in.
Tags : 
    
MapR Technologies
Published By: MapR Technologies     Published Date: Aug 01, 2018
How do you get a machine learning system to deliver value from big data? Turns out that 90% of the effort required for success in machine learning is not the algorithm or the model or the learning - it's the logistics. Ted Dunning and Ellen Friedman identify what matters in machine learning logistics, what challenges arise, especially in a production setting, and they introduce an innovative solution: the rendezvous architecture. This new design for model management is based on a streaming approach in a microservices style. Rendezvous addresses the need to preserve and share raw data, to do effective model-to-model comparisons and to have new models on standby, ready for a hot hand-off when a production model needs to be replaced.
Tags : 
    
MapR Technologies
Published By: Skytree     Published Date: Nov 23, 2014
Critical business information is often in the form of unstructured and semi-structured data that can be hard or impossible to interpret with legacy systems. In this brief, discover how you can use machine learning to analyze both unstructured text data and semi- structured log data, providing you with the insights needed to achieve your business goals.
Tags : 
log data, machine learning, natural language, nlp, natural language processing, skytree, unstructured data, semi-structured data, data analysis
    
Skytree
Published By: AnalytixDS     Published Date: Feb 28, 2015
With future business intelligence solutions clearly evolving from data that comes from highly efficient and well behaved systems, to data that comes from the extended enterprise where data is not necessarily so well structured and behaved - Organizations are forced into a more collaborative mode of operation with their core infrastructure being adapted from the consumer space, and to the extent possible, conformed to their existing repositories. This whitepaper attempts to address various challenges consumers face while managing enormous data sets within the context of this complex scenario. Further, we’ll try to answer the question: Is Big Data Governance really that different from traditional data governance initiatives? Finally, we’ll see how AnalytiX™ Mapping Manager™ can help organizations accelerate the development and deployment of a successful Big Data/ Business Intelligence platform and accelerate delivery of all sorts of data – structured, semi-structured as well as unstruc
Tags : 
big data, big data governance, data governance, analytixds
    
AnalytixDS
Published By: AnalytixDS     Published Date: May 09, 2016
This paper seeks to provide insight into how AnalytiX Data Services can address many of the data related issues that come with combining disparate source data as is often the case in mergers and acquisitions. It will cover some of the best features and functionality offered by AnalytiX Data Services’ flagship product AnalytiX Mapping Manager, which have specific capabilities that are of high value in this scenario.
Tags : 
    
AnalytixDS
Published By: Ted Hills     Published Date: Jul 02, 2015
Entity-relationship (E-R) modeling is a tried and true notation for use in designing Structured Query Language (SQL) databases, but the new data structures that Not-Only SQL (NOSQL) DBMSs make possible can’t be represented in E-R notation. Furthermore, E-R notation has some limitations even for SQL database design. This article shows how a new notation, the Conceptual and Objective Modeling (COM) notation, is able to represent NOSQL designs that are beyond the reach of E-R notation. At the end, it gives a peek into the tutorial workshop to be given at the 2015 NOSQL Conference in San Jose, CA, US, in August, which will provide opportunities to apply COM notation to practical problems.
Tags : 
nosql, sql, data modeling, data model, er modeling, entity relationship, database, relational, dbms, schema-less, xml, conceptual, logical, physical
    
Ted Hills
Published By: ROKITT     Published Date: Apr 11, 2016
Few things benefit an organization as much as information governance. Data is now one of the most valuable holdings for any business, but unfortunately in many environments much of the data is ignored and its potential value lost. Ignored data is also inherently less secure than data that’s tracked. Businesses need a way to bring hidden data out of the shadows and make it safe and useful again. Data discovery facilitates unearthing previously unknown data relationships. Mapping data flow and data lineage helps make data safe, compliant, and auditable. Good metadata makes a system more navigable. All these tools make data more accessible to staff and more useful for capitalizing on business opportunities.
Tags : 
    
ROKITT
Published By: FairCom     Published Date: May 25, 2016
As companies embrace NoSQL as the “next big thing,” they are rightly cautious of abandoning their investment in SQL. The question a responsible developer or IT manager must investigate is “in which cases are each of these technologies, SQL and NoSQL, the appropriate solution?” For example, cloud provider BigStep offered this assessment: “NoSQL is not the best model for OLTP, ad hoc queries, complicated relationships among the data, and situations when stability and reliability outweigh the importance of speed.” While that statement may be true of many NoSQL databases, c-treeACE is the exception. Its unique, No+SQL architecture offers the advantages of SQL on top of a robust, high-performance NoSQL core engine. In this white paper, you'll read five ways c-treeACE breaks the NoSQL mold in terms of: • Data Integrity • Availability and Reliability • Complex Data Relationships • Flexible Queries • Performance
Tags : 
    
FairCom
Published By: IDERA     Published Date: Nov 07, 2017
Increasing dependence on enterprise-class applications has created a demand for centralizing organizational data using techniques such as Master Data Management (MDM). The development of a useful MDM environment is often complicated by a lack of shared organizational information and data modeling. In this paper, David Loshin explores some of the root causes that have influenced an organization’s development of a variety of data models, how that organic development has introduced potential inconsistency in structure and semantics, and how those inconsistencies complicate master data integration.
Tags : 
    
IDERA
Published By: Infogix     Published Date: Apr 21, 2017
Data Governance and GDPR go Together Like Peanut Butter and Jelly May 2018 might sound far away, but any organization that does business in the EU must be prepared on day one to comply with the new General Data Protection Regulation (GDPR). This regulation carries stiff penalties for non-compliance – first time violators should expect to pay up to the greater of 4% of global annual revenue or 20 million EUR in fines – so it behooves organizations to cross their i's and dot their t's in regards to their GDPR plan. One integral component that is vital is instituting data governance to understand the organization’s data from a business perspective. Learn more about "What is considered Personally Identifiable Information?”, “What are the GDPR compliance obligations?”, and “Why data governance is vital?” in an easy to read white paper titled: General Data Protection Regulation (GDPR) and the Vital Role of Data Governance.
Tags : 
    
Infogix
Published By: R2C     Published Date: Jan 05, 2018
Consistent sharing of data across organizational boundaries is often hampered by a lack of transparency, visibility, and trust in the agreements made between parties who seek to share data assets. How does an organization with cultural barriers to sharing data assets engender trust in the process? Leveraging blockchain technology that “oraclizes” data sharing agreements may provide an answer.
Tags : 
    
R2C
Published By: Octopai     Published Date: Sep 01, 2018
For many BI professionals, every task can feel like MISSION IMPOSSIBLE. All the manual mapping required to sort out inconsistencies in data and the lack of tools to simplify and shorten the process of finding and understanding data leaves BI groups frustrated and slows down the business. This whitepaper examines the revolutionary impact of automation on the cumbersome manual processes that have been dragging BI down for so long. • Data correction vs process correction • Root-cause analysis with data lineage: reverse-tracing the data flow • Data quality rules and data controls • Automated data lineage mapping
Tags : 
    
Octopai
Published By: Dataiku     Published Date: Feb 01, 2018
A proof of concept (POC) is a popular way for businesses to evaluate the viability of a system, product, or service to ensure it meets specific needs or sets of predefined requirements. But what does running a POC mean in practice specifically for data science? POCs should prove not just that a solution solves one particular, specific problem, but that the solution in question will provide widespread value to the company: that it's capable of bringing a data-driven perspective to a range of the business's strategic objectives. Get the 7 steps to running an efficient POC in this white paper.
Tags : 
    
Dataiku
Published By: Dataiku     Published Date: Feb 19, 2018
A proof of concept (POC) is a popular way for businesses to evaluate the viability of a system, product, or service to ensure it meets specific needs or sets of predefined requirements. But what does running a POC mean in practice specifically for data science? POCs should prove not just that a solution solves one particular, specific problem, but that the solution in question will provide widespread value to the company: that it's capable of bringing a data-driven perspective to a range of the business's strategic objectives. Get the 7 steps to running an efficient POC in this white paper.
Tags : 
    
Dataiku
Published By: graphgrid     Published Date: Oct 02, 2018
Whether it’s for a specific application, optimizing your existing operations, or innovating new customer services, graph databases are a powerful technology that turn accessing and analyzing your data into a competitive advantage. Graph databases resolve the Big Data limitations and free up data architects and developers to build amazing solutions that predict behaviors, enable data driven decisions and make insightful recommendations. Yet just as cars aren’t functional with only engines, graph databases require surrounding capabilities including ingesting multi-source data, building data models that are unique to your business needs, ease of data interaction and visualization, seamless co-existence with legacy systems, high performance search capabilities, and integration of data analysis applications. Collectively, this comprehensive data platform turns graph capabilities into tangible insights that drive your business forward.
Tags : 
    
graphgrid
Published By: graphgrid     Published Date: Oct 02, 2018
Whether it’s for a specific application, optimizing your existing operations, or innovating new customer services, graph databases are a powerful technology that turn accessing and analyzing your data into a competitive advantage. Graph databases resolve the Big Data limitations and free up data architects and developers to build amazing solutions that predict behaviors, enable data driven decisions and make insightful recommendations. Yet just as cars aren’t functional with only engines, graph databases require surrounding capabilities including ingesting multi-source data, building data models that are unique to your business needs, ease of data interaction and visualization, seamless co-existence with legacy systems, high performance search capabilities, and integration of data analysis applications. Collectively, this comprehensive data platform turns graph capabilities into tangible insights that drive your business forward.
Tags : 
    
graphgrid
Published By: DATAVERSITY     Published Date: Dec 23, 2013
Everyone in an organization relies on Metadata to do their jobs. Whenever an email is sent, a report is run, inventory is ordered, compliance procedures are verified, a new IT system is integrated, applications are executed, or essentially any other business function, process, or decision is undertaken, Metadata is facilitating in the background. If that Metadata is corrupt, missing, redundant, or unpredictable then they cannot do their jobs well, they cannot trust the data they are using, and the organization ultimately suffers at all levels. Data Stewards are the people who are use, define, cleanse, archive, analyze, and share the data that is mapped directly to the Metadata of their myriad database and application systems. If your organization does not have Data Stewards (or an inefficient Stewardship Program), you need them. This paper is sponsored by: ASG.
Tags : 
    
DATAVERSITY
Start   Previous   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15    Next    End
Search      

Add Research

Get your company's research in the hands of targeted business professionals.

We use technologies such as cookies to understand how you use our site and to provide a better user experience. This includes personalizing content, using analytics and improving site operations. We may share your information about your use of our site with third parties in accordance with our Privacy Policy. You can change your cookie settings as described here at any time, but parts of our site may not function correctly without them. By continuing to use our site, you agree that we can save cookies on your device, unless you have disabled cookies.
I Accept