using

Results 1 - 25 of 2639Sort Results By: Published Date | Title | Company Name
Published By: MariaDB     Published Date: Apr 02, 2018
Learn how to use JSON functions for semi-structured data This white paper explains step-by-step how to support semi-structured data with JSON functions, introduced in MariaDB Server 10.2, using a practical use case with sample data and queries for everything from creating, reading and querying JSON documents to enforcing data integrity with check constraints and functions. You will learn how to: • Create, read and update JSON documents • Index and query JSON documents • Enforce data integrity with JSON documents • Combine relational data and JSON documents • Return JSON documents as relational data • Return relational data as JSON documents
Tags : 
    
MariaDB
Published By: Datawatch     Published Date: Apr 06, 2018
Enterprises are focusing on becoming ever more data-driven, meaning that it is simply unacceptable to allow data to go to waste. Yet, as the amount of data businesses collect and control continues to increase exponentially, many organizations are failing to derive enough business value from their data. Companies are feeling the pressure to extract maximum value from all of their data, both defensive and offensive. Defensive analytics are the “plumbing aspects” of data management that must be captured to mitigate risk and establish a basic understanding of business performance. Offensive analytics build on defensive analytics and support overarching business objectives, strategic initiatives and long-term goals using predictive models. In this whitepaper, you will learn how to address many challenges, including streamlining operational reporting, delivering insight and providing a single, unified platform for everyone.
Tags : 
    
Datawatch
Published By: Alation     Published Date: Jan 06, 2017
90% of the time that is spent creating new reports is recreating information that already exists. Without a way to effectively share prior work and identify verified data sources, analysts and other data consumers lack shared context on how to apply data to analytic inquiries and business decision making. Time is wasted tracking down subject matter experts and trying to unearth tribal knowledge. Leading analytic organizations in retail, healthcare, financial services and technology are using data catalogs to help their analysts find, understand and use data appropriately. What are the 5 critical capabilities of a data catalog? Learn more here:
Tags : 
    
Alation
Published By: Alation     Published Date: Jan 06, 2017
90% of the time that is spent creating new reports is recreating information that already exists. Without a way to effectively share prior work and identify verified data sources, analysts and other data consumers lack shared context on how to apply data to analytic inquiries and business decision making. Time is wasted tracking down subject matter experts and trying to unearth tribal knowledge. Leading analytic organizations in retail, healthcare, financial services and technology are using data catalogs to help their analysts find, understand and use data appropriately. What are the 5 critical capabilities of a data catalog? Learn more here:
Tags : 
    
Alation
Published By: DATAVERSITY     Published Date: Jul 06, 2015
The growth of NoSQL data storage solutions have revolutionized the way enterprises are dealing with their data. The older, relational platforms are still being utilized by most organizations, while the implementation of varying NoSQL platforms including Key-Value, Wide Column, Document, Graph, and Hybrid data stores are increasing at faster rates than ever seen before. Such implementations are causing enterprises to revise their Data Management procedures across-the-board from governance to analytics, metadata management to software development, data modeling to regulation and compliance. The time-honored techniques for data modeling are being rewritten, reworked, and modified in a multitude of different ways, often wholly dependent on the NoSQL platform under development. The research report analyzes a 2015 DATAVERSITY® survey titled “Modeling NoSQL.” The survey examined a number of crucial issues within the NoSQL world today, with focus on data modeling in particular.
Tags : 
    
DATAVERSITY
Published By: Couchbase     Published Date: Dec 04, 2014
Interactive applications have changed dramatically over the last 15 years. In the late ‘90s, large web companies emerged with dramatic increases in scale on many dimensions: · The number of concurrent users skyrocketed as applications increasingly became accessible · via the web (and later on mobile devices). · The amount of data collected and processed soared as it became easier and increasingly · valuable to capture all kinds of data. · The amount of unstructured or semi-structured data exploded and its use became integral · to the value and richness of applications. Dealing with these issues was more and more difficult using relational database technology. The key reason is that relational databases are essentially architected to run a single machine and use a rigid, schema-based approach to modeling data. Google, Amazon, Facebook, and LinkedIn were among the first companies to discover the serious limitations of relational database technology for supporting these new application requirements. Commercial alternatives didn’t exist, so they invented new data management approaches themselves. Their pioneering work generated tremendous interest because a growing number of companies faced similar problems. Open source NoSQL database projects formed to leverage the work of the pioneers, and commercial companies associated with these projects soon followed. Today, the use of NoSQL technology is rising rapidly among Internet companies and the enterprise. It’s increasingly considered a viable alternative to relational databases, especially as more organizations recognize that operating at scale is more effectively achieved running on clusters of standard, commodity servers, and a schema-less data model is often a better approach for handling the variety and type of data most often captured and processed today.
Tags : 
database, nosql, data, data management, white paper, why nosql, couchbase
    
Couchbase
Published By: Embarcadero     Published Date: Jan 23, 2015
There are multiple considerations for collaborating on metadata within an organization, and you need a good metadata strategy to define and manage the right processes for a successful implementation. In this white paper, David Loshin describes how to enhance enterprise knowledge sharing by using collaborative metadata for structure, content, and semantics.
Tags : 
data, data management, metadata, enterprise information management, data modeling, embarcadero
    
Embarcadero
Published By: CA Technologies     Published Date: Apr 24, 2013
Using ERwin Data Modeler & Microsoft SQL Azure to Move Data to the Cloud within the DaaS Lifecycle by Nuccio Piscopo Cloud computing is one of the major growth areas in the world of IT. This article provides an analysis of how to apply the DaaS (Database as a Service) lifecycle working with ERwin and the SQL Azure platform. It should help enterprises to obtain the benefits of DaaS and take advantage of its potential for improvement and transformation of data models in the Cloud. The use case introduced identifies key actions, requirements and practices that can support activities to help formulate a plan for successfully moving data to the Cloud.
Tags : 
    
CA Technologies
Published By: CA Technologies     Published Date: Dec 03, 2015
This 2nd paper in a 3-part series by David Loshin explores some challenges in bootstrapping a data governance program, and then considers key methods for using metadata to establish the starting point for data governance. The paper will focus on how metadata management facilitates progress along three facets of the data governance program including assessment, collaboration and operationalization.
Tags : 
    
CA Technologies
Published By: Cloudant - an IBM Company     Published Date: Jun 01, 2015
Whether you're a DBA, data scientist or developer, you're probably considering how the cloud can help modernize your information management and analytics strategy. Cloud data warehousing can help you get more value from your data by combining the benefits of the cloud - speed, scale, and agility - with the simplicity and performance of traditional on-premises appliances. This white paper explores how a cloud data warehouse like IBM dashDB can reduce costs and deliver new business insights. Readers will learn about: - How data warehousing-as-a-service helps you scale without incurring extra costs - The benefits of in-database analytics in a cloud data warehouse - How a cloud data warehouse can integrate with the larger ecosystem of business intelligence tools, both on prem and off prem
Tags : 
nosql, ibm, dashdb, database, cloud
    
Cloudant - an IBM Company
Published By: CMMI Institute     Published Date: Sep 03, 2014
To drive strategic insights that lead to competitive advantage, businesses must make the best and smartest use of today’s vast amount of data. To accomplish this, organizations need to apply a collaborative approach to optimizing their data assets. For organizations that seek to evaluate and improve their data management practices, CMMI® Institute has developed the Data Management Maturity (DMM)? model to bridge the perspective gap between business and IT. Download the white paper Why is Measurement of Data Management Maturity Important? to enable you to: - Empower your executives to make better and faster decisions using a strategic view of their data. - Achieve the elusive alignment and agreement between the business and IT - Create a clear path to increasing capabilities
Tags : 
white paper, enterprise data management, data model, data modeling, data maturity model, cmmi institute
    
CMMI Institute
Published By: Melissa Data     Published Date: Mar 23, 2017
In this eBook published by Melissa, author David Loshin explores the challenges of determining when data values are or are not valid and correct, how these values can be corrected, and how data cleansing services can be integrated throughout the enterprise. This Data Quality Primer eBook gives an overview of the five key aspects of data quality management (data cleansing, address data quality, address standardization, data enhancement, and record linkage/matching), as well as provides practical aspects to introduce proactive data quality management into your organization.
Tags : 
    
Melissa Data
Published By: Basho     Published Date: Mar 08, 2015
Many companies still use relational databases as part of the technology stack. However, others are innovating and incorporating NoSQL solutions and as a result they have simplified their deployments, enhanced their availability and reduced their costs. In this whitepaper you will learn: - Why companies choose Riak over a relational database. - How to analyze the decision points you should consider when choosing between relational and Nosql databases - Simple patters for building common applications in Riak using its key/value design Learn how you can lead your organization into this new frontier.
Tags : 
data, data management, basho, database, nosql, data models
    
Basho
Published By: iCEDQ     Published Date: Feb 05, 2015
The demand for using data as an asset has grown to a level where data-centric applications are now the norm in enterprises. Yet data-centric applications fall short of user expectations at a high rate. Part of this is due to inadequate quality assurance. This in turn arises from trying to develop data-centric projects using the old paradigm of the SDLC, which came into existence during an age of process automation. SDLC does not fit with data-centric projects and cannot address the QA needs of these projects. Instead, a new approach is needed where analysts develop business rules to test atomic items of data quality. These rules have to be run in an automated fashion in a business rules engine. Additionally, QA has to be carried past the point of application implementation and support the running of the production environment.
Tags : 
data, data management, data warehousing, data quality, etl testing, malcolm chisholm
    
iCEDQ
Published By: VoltDB     Published Date: Feb 12, 2016
The need for fast data applications is growing rapidly, driven by the IoT, the surge in machine-to-machine (M2M) data, global mobile device proliferation, and the monetization of SaaS platforms. So how do you combine real-time, streaming analytics with real-time decisions in an architecture that’s reliable, scalable, and simple? In this report, Ryan Betts and John Hugg from VoltDB examine ways to develop apps for fast data, using pre-defined patterns. These patterns are general enough to suit both the do-it-yourself, hybrid batch/streaming approach, as well as the simpler, proven in-memory approach available with certain fast database offerings.
Tags : 
    
VoltDB
Published By: Looker     Published Date: Sep 27, 2017
Creating metrics to measure the success or failure of your business may seem simple, but there are many avoidable mistakes that business leaders make every day. Many leaders end up focusing on “vanity metrics”, which might make the business look healthy, but do not actually give you insights into what is going on. And worst case, they are masking larger issues that you need to know and should be addressing. In this report, learn from other data-driven businesses how to avoid vanity metrics and focus on metrics that matter.
Tags : 
    
Looker
Published By: WhereScape     Published Date: Mar 16, 2016
Industry expert Wayne Eckerson provides an overview of the emerging data warehouse automation market and outlines the value of using automation tools for developing data warehouses, data marts, analytical environments and big data platforms. Eckerson details WhereScape’s architecture—which enables a data-driven approach to automation. Eckerson also discusses how agility and automation together encourage iterative development and closer collaboration between business and IT.
Tags : 
    
WhereScape
Published By: WhereScape     Published Date: Oct 20, 2017
Put IT on Automatic: Cloud Data Warehousing Has Arrived by Eric Kavanagh of The Bloor Group Download this white paper to better understand the value the cloud offers IT teams developing data infrastructure, and how automation can be used to not only accelerate time to value, but to tackle quality control, compliance and developer productivity. Sponsored by WhereScape. To learn more about WhereScape automation, visitwww.wherescape.com"
Tags : 
    
WhereScape
Published By: Amazon Web Services     Published Date: Apr 04, 2016
Amazon DynamoDB is a fully managed, NoSQL database service. Many workloads implemented using a traditional Relational Database Management System (RDBMS) are good candidates for a NoSQL database such as DynamoDB. This whitepaper details the process for identifying these candidate workloads and planning and executing a migration to DynamoDB.
Tags : 
    
Amazon Web Services
Published By: Snowflake Computing     Published Date: Feb 27, 2017
Snowflake’s cloud-built data warehouse delivers the performance, concurrency, simplicity and affordability needed to store and analyze all of an organization’s data in one location. Snowflake combines the power of data warehousing, the flexibility of big data platforms and the elasticity of the cloud. Find out more at snowflake.net.
Tags : 
    
Snowflake Computing
Published By: IDERA     Published Date: Nov 07, 2017
Increasing dependence on enterprise-class applications has created a demand for centralizing organizational data using techniques such as Master Data Management (MDM). The development of a useful MDM environment is often complicated by a lack of shared organizational information and data modeling. In this paper, David Loshin explores some of the root causes that have influenced an organization’s development of a variety of data models, how that organic development has introduced potential inconsistency in structure and semantics, and how those inconsistencies complicate master data integration.
Tags : 
    
IDERA
Published By: Data Ninja     Published Date: Apr 16, 2017
By adding structure to free text using text analytics and graph databases, text becomes valuable business data. This paper examines a real life use case in risk analysis. Text is a part of all communication channels from social media, documents, logs, and data bases. In order to use the information from text, you need to extract the data in a way that provides useful information on entities, locations, organizations, and their properties. Graph databases are very powerful in showing the text relationships including the nearest neighbors, clusters, and the shortest paths. The combination of text analytics and graph databases can be used to solve business problems.
Tags : 
    
Data Ninja
Published By: Alteryx     Published Date: May 24, 2017
Spreadsheets are a mainstay in almost every organization. They are a great way to calculate and manipulate numeric data to make decisions. Unfortunately, as organizations grow, so does the data, and relying on spreadsheet-based tools like Excel for heavy data preparation, blending and analysis can be cumbersome and unreliable. Alteryx, Inc. is a leader in self-service data analytics and provides analysts with the ability to easily prep, blend, and analyze all data using a repeatable workflow, then deploy and share analytics at scale for deeper insights in hours, not weeks. This paper highlights how transitioning from a spreadsheet-based environment to an Alteryx workflow approach can help analyst better understand their data, improve consistency, and operationalize analytics through a flexible deployment and consumption environment.
Tags : 
    
Alteryx
Published By: CloverETL     Published Date: Nov 24, 2017
The volume of data is increasing by 40% per year (Source: IDC). In addition, the structure and quality of data differs vastly with a growing number of data sources. More agile ways of working with data are required. This whitepaper discusses the vast options available for managing and storing data using data architectures, and offers use cases for each architecture. Furthermore, the whitepaper explores the benefits, drawbacks and challenges of each data architecture and commonly used practices for building these architectures.
Tags : 
    
CloverETL
Published By: EnterpriseDB     Published Date: Sep 02, 2014
This technical paper from EnterpriseDB reviews and illustrates Postgres’ NoSQL capabilities in the context of Postgres’ robust relational competencies. It describes performance tests that demonstrate that Postgres is a superior platform for handling most NoSQL workloads.
Tags : 
white paper, nosql, database, enterprisedb, postgres
    
EnterpriseDB
Start   Previous   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15    Next    End
Search      

Add Research

Get your company's research in the hands of targeted business professionals.